|
- *> \brief \b CTGSNA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CTGSNA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
- * LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER HOWMNY, JOB
- * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * INTEGER IWORK( * )
- * REAL DIF( * ), S( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
- * $ VR( LDVR, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTGSNA estimates reciprocal condition numbers for specified
- *> eigenvalues and/or eigenvectors of a matrix pair (A, B).
- *>
- *> (A, B) must be in generalized Schur canonical form, that is, A and
- *> B are both upper triangular.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is CHARACTER*1
- *> Specifies whether condition numbers are required for
- *> eigenvalues (S) or eigenvectors (DIF):
- *> = 'E': for eigenvalues only (S);
- *> = 'V': for eigenvectors only (DIF);
- *> = 'B': for both eigenvalues and eigenvectors (S and DIF).
- *> \endverbatim
- *>
- *> \param[in] HOWMNY
- *> \verbatim
- *> HOWMNY is CHARACTER*1
- *> = 'A': compute condition numbers for all eigenpairs;
- *> = 'S': compute condition numbers for selected eigenpairs
- *> specified by the array SELECT.
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
- *> condition numbers are required. To select condition numbers
- *> for the corresponding j-th eigenvalue and/or eigenvector,
- *> SELECT(j) must be set to .TRUE..
- *> If HOWMNY = 'A', SELECT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the square matrix pair (A, B). N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The upper triangular matrix A in the pair (A,B).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,N)
- *> The upper triangular matrix B in the pair (A, B).
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is COMPLEX array, dimension (LDVL,M)
- *> IF JOB = 'E' or 'B', VL must contain left eigenvectors of
- *> (A, B), corresponding to the eigenpairs specified by HOWMNY
- *> and SELECT. The eigenvectors must be stored in consecutive
- *> columns of VL, as returned by CTGEVC.
- *> If JOB = 'V', VL is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL. LDVL >= 1; and
- *> If JOB = 'E' or 'B', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[in] VR
- *> \verbatim
- *> VR is COMPLEX array, dimension (LDVR,M)
- *> IF JOB = 'E' or 'B', VR must contain right eigenvectors of
- *> (A, B), corresponding to the eigenpairs specified by HOWMNY
- *> and SELECT. The eigenvectors must be stored in consecutive
- *> columns of VR, as returned by CTGEVC.
- *> If JOB = 'V', VR is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR. LDVR >= 1;
- *> If JOB = 'E' or 'B', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (MM)
- *> If JOB = 'E' or 'B', the reciprocal condition numbers of the
- *> selected eigenvalues, stored in consecutive elements of the
- *> array.
- *> If JOB = 'V', S is not referenced.
- *> \endverbatim
- *>
- *> \param[out] DIF
- *> \verbatim
- *> DIF is REAL array, dimension (MM)
- *> If JOB = 'V' or 'B', the estimated reciprocal condition
- *> numbers of the selected eigenvectors, stored in consecutive
- *> elements of the array.
- *> If the eigenvalues cannot be reordered to compute DIF(j),
- *> DIF(j) is set to 0; this can only occur when the true value
- *> would be very small anyway.
- *> For each eigenvalue/vector specified by SELECT, DIF stores
- *> a Frobenius norm-based estimate of Difl.
- *> If JOB = 'E', DIF is not referenced.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER
- *> The number of elements in the arrays S and DIF. MM >= M.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The number of elements of the arrays S and DIF used to store
- *> the specified condition numbers; for each selected eigenvalue
- *> one element is used. If HOWMNY = 'A', M is set to N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N).
- *> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N+2)
- *> If JOB = 'E', IWORK is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit
- *> < 0: If INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup tgsna
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The reciprocal of the condition number of the i-th generalized
- *> eigenvalue w = (a, b) is defined as
- *>
- *> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
- *>
- *> where u and v are the right and left eigenvectors of (A, B)
- *> corresponding to w; |z| denotes the absolute value of the complex
- *> number, and norm(u) denotes the 2-norm of the vector u. The pair
- *> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
- *> matrix pair (A, B). If both a and b equal zero, then (A,B) is
- *> singular and S(I) = -1 is returned.
- *>
- *> An approximate error bound on the chordal distance between the i-th
- *> computed generalized eigenvalue w and the corresponding exact
- *> eigenvalue lambda is
- *>
- *> chord(w, lambda) <= EPS * norm(A, B) / S(I),
- *>
- *> where EPS is the machine precision.
- *>
- *> The reciprocal of the condition number of the right eigenvector u
- *> and left eigenvector v corresponding to the generalized eigenvalue w
- *> is defined as follows. Suppose
- *>
- *> (A, B) = ( a * ) ( b * ) 1
- *> ( 0 A22 ),( 0 B22 ) n-1
- *> 1 n-1 1 n-1
- *>
- *> Then the reciprocal condition number DIF(I) is
- *>
- *> Difl[(a, b), (A22, B22)] = sigma-min( Zl )
- *>
- *> where sigma-min(Zl) denotes the smallest singular value of
- *>
- *> Zl = [ kron(a, In-1) -kron(1, A22) ]
- *> [ kron(b, In-1) -kron(1, B22) ].
- *>
- *> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
- *> transpose of X. kron(X, Y) is the Kronecker product between the
- *> matrices X and Y.
- *>
- *> We approximate the smallest singular value of Zl with an upper
- *> bound. This is done by CLATDF.
- *>
- *> An approximate error bound for a computed eigenvector VL(i) or
- *> VR(i) is given by
- *>
- *> EPS * norm(A, B) / DIF(i).
- *>
- *> See ref. [2-3] for more details and further references.
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
- *> Umea University, S-901 87 Umea, Sweden.
- *
- *> \par References:
- * ================
- *>
- *> \verbatim
- *>
- *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
- *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
- *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
- *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
- *>
- *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
- *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
- *> Estimation: Theory, Algorithms and Software, Report
- *> UMINF - 94.04, Department of Computing Science, Umea University,
- *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
- *> To appear in Numerical Algorithms, 1996.
- *>
- *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
- *> for Solving the Generalized Sylvester Equation and Estimating the
- *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
- *> Department of Computing Science, Umea University, S-901 87 Umea,
- *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
- *> Note 75.
- *> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER HOWMNY, JOB
- INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- INTEGER IWORK( * )
- REAL DIF( * ), S( * )
- COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
- $ VR( LDVR, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- INTEGER IDIFJB
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS
- INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
- REAL BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
- COMPLEX YHAX, YHBX
- * ..
- * .. Local Arrays ..
- COMPLEX DUMMY( 1 ), DUMMY1( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SCNRM2, SLAMCH, SLAPY2, SROUNDUP_LWORK
- COMPLEX CDOTC
- EXTERNAL LSAME, SCNRM2, SLAMCH, SLAPY2, SROUNDUP_LWORK,
- $ CDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV, CLACPY, CTGEXC, CTGSYL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CMPLX, MAX
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- WANTBH = LSAME( JOB, 'B' )
- WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
- WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
- *
- SOMCON = LSAME( HOWMNY, 'S' )
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- *
- IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
- INFO = -10
- ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
- INFO = -12
- ELSE
- *
- * Set M to the number of eigenpairs for which condition numbers
- * are required, and test MM.
- *
- IF( SOMCON ) THEN
- M = 0
- DO 10 K = 1, N
- IF( SELECT( K ) )
- $ M = M + 1
- 10 CONTINUE
- ELSE
- M = N
- END IF
- *
- IF( N.EQ.0 ) THEN
- LWMIN = 1
- ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
- LWMIN = 2*N*N
- ELSE
- LWMIN = N
- END IF
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- *
- IF( MM.LT.M ) THEN
- INFO = -15
- ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -18
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CTGSNA', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- KS = 0
- DO 20 K = 1, N
- *
- * Determine whether condition numbers are required for the k-th
- * eigenpair.
- *
- IF( SOMCON ) THEN
- IF( .NOT.SELECT( K ) )
- $ GO TO 20
- END IF
- *
- KS = KS + 1
- *
- IF( WANTS ) THEN
- *
- * Compute the reciprocal condition number of the k-th
- * eigenvalue.
- *
- RNRM = SCNRM2( N, VR( 1, KS ), 1 )
- LNRM = SCNRM2( N, VL( 1, KS ), 1 )
- CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
- $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
- YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
- CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
- $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
- YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
- COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
- IF( COND.EQ.ZERO ) THEN
- S( KS ) = -ONE
- ELSE
- S( KS ) = COND / ( RNRM*LNRM )
- END IF
- END IF
- *
- IF( WANTDF ) THEN
- IF( N.EQ.1 ) THEN
- DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
- ELSE
- *
- * Estimate the reciprocal condition number of the k-th
- * eigenvectors.
- *
- * Copy the matrix (A, B) to the array WORK and move the
- * (k,k)th pair to the (1,1) position.
- *
- CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
- CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
- IFST = K
- ILST = 1
- *
- CALL CTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
- $ N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
- *
- IF( IERR.GT.0 ) THEN
- *
- * Ill-conditioned problem - swap rejected.
- *
- DIF( KS ) = ZERO
- ELSE
- *
- * Reordering successful, solve generalized Sylvester
- * equation for R and L,
- * A22 * R - L * A11 = A12
- * B22 * R - L * B11 = B12,
- * and compute estimate of Difl[(A11,B11), (A22, B22)].
- *
- N1 = 1
- N2 = N - N1
- I = N*N + 1
- CALL CTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
- $ N, WORK, N, WORK( N1+1 ), N,
- $ WORK( N*N1+N1+I ), N, WORK( I ), N,
- $ WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
- $ 1, IWORK, IERR )
- END IF
- END IF
- END IF
- *
- 20 CONTINUE
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- RETURN
- *
- * End of CTGSNA
- *
- END
|