|
- *> \brief <b> CSYSV_RK computes the solution to system of linear equations A * X = B for SY matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CSYSV_RK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csysv_rk.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csysv_rk.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csysv_rk.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CSYSV_RK( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
- * WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), E( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> CSYSV_RK computes the solution to a complex system of linear
- *> equations A * X = B, where A is an N-by-N symmetric matrix
- *> and X and B are N-by-NRHS matrices.
- *>
- *> The bounded Bunch-Kaufman (rook) diagonal pivoting method is used
- *> to factor A as
- *> A = P*U*D*(U**T)*(P**T), if UPLO = 'U', or
- *> A = P*L*D*(L**T)*(P**T), if UPLO = 'L',
- *> where U (or L) is unit upper (or lower) triangular matrix,
- *> U**T (or L**T) is the transpose of U (or L), P is a permutation
- *> matrix, P**T is the transpose of P, and D is symmetric and block
- *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> CSYTRF_RK is called to compute the factorization of a complex
- *> symmetric matrix. The factored form of A is then used to solve
- *> the system of equations A * X = B by calling BLAS3 routine CSYTRS_3.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the symmetric matrix A.
- *> If UPLO = 'U': the leading N-by-N upper triangular part
- *> of A contains the upper triangular part of the matrix A,
- *> and the strictly lower triangular part of A is not
- *> referenced.
- *>
- *> If UPLO = 'L': the leading N-by-N lower triangular part
- *> of A contains the lower triangular part of the matrix A,
- *> and the strictly upper triangular part of A is not
- *> referenced.
- *>
- *> On exit, if INFO = 0, diagonal of the block diagonal
- *> matrix D and factors U or L as computed by CSYTRF_RK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> For more info see the description of CSYTRF_RK routine.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is COMPLEX array, dimension (N)
- *> On exit, contains the output computed by the factorization
- *> routine CSYTRF_RK, i.e. the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
- *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
- *>
- *> NOTE: For 1-by-1 diagonal block D(k), where
- *> 1 <= k <= N, the element E(k) is set to 0 in both
- *> UPLO = 'U' or UPLO = 'L' cases.
- *>
- *> For more info see the description of CSYTRF_RK routine.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D,
- *> as determined by CSYTRF_RK.
- *>
- *> For more info see the description of CSYTRF_RK routine.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension ( MAX(1,LWORK) ).
- *> Work array used in the factorization stage.
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >= 1. For best performance
- *> of factorization stage LWORK >= max(1,N*NB), where NB is
- *> the optimal blocksize for CSYTRF_RK.
- *>
- *> If LWORK = -1, then a workspace query is assumed;
- *> the routine only calculates the optimal size of the WORK
- *> array for factorization stage, returns this value as
- *> the first entry of the WORK array, and no error message
- *> related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *>
- *> < 0: If INFO = -k, the k-th argument had an illegal value
- *>
- *> > 0: If INFO = k, the matrix A is singular, because:
- *> If UPLO = 'U': column k in the upper
- *> triangular part of A contains all zeros.
- *> If UPLO = 'L': column k in the lower
- *> triangular part of A contains all zeros.
- *>
- *> Therefore D(k,k) is exactly zero, and superdiagonal
- *> elements of column k of U (or subdiagonal elements of
- *> column k of L ) are all zeros. The factorization has
- *> been completed, but the block diagonal matrix D is
- *> exactly singular, and division by zero will occur if
- *> it is used to solve a system of equations.
- *>
- *> NOTE: INFO only stores the first occurrence of
- *> a singularity, any subsequent occurrence of singularity
- *> is not stored in INFO even though the factorization
- *> always completes.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup hesv_rk
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> December 2016, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE CSYSV_RK( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, WORK,
- $ LWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * ), B( LDB, * ), E( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER LWKOPT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SROUNDUP_LWORK
- EXTERNAL LSAME, SROUNDUP_LWORK
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, CSYTRF_RK, CSYTRS_3
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -11
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- LWKOPT = 1
- ELSE
- CALL CSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, -1, INFO )
- LWKOPT = INT( WORK( 1 ) )
- END IF
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CSYSV_RK ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Compute the factorization A = U*D*U**T or A = L*D*L**T.
- *
- CALL CSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO )
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B with BLAS3 solver, overwriting B with X.
- *
- CALL CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO )
- *
- END IF
- *
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- *
- RETURN
- *
- * End of CSYSV_RK
- *
- END
|