|
- *> \brief \b CSTEDC
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CSTEDC + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstedc.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstedc.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstedc.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
- * LRWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER COMPZ
- * INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL D( * ), E( * ), RWORK( * )
- * COMPLEX WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CSTEDC computes all eigenvalues and, optionally, eigenvectors of a
- *> symmetric tridiagonal matrix using the divide and conquer method.
- *> The eigenvectors of a full or band complex Hermitian matrix can also
- *> be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
- *> matrix to tridiagonal form.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] COMPZ
- *> \verbatim
- *> COMPZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only.
- *> = 'I': Compute eigenvectors of tridiagonal matrix also.
- *> = 'V': Compute eigenvectors of original Hermitian matrix
- *> also. On entry, Z contains the unitary matrix used
- *> to reduce the original matrix to tridiagonal form.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the diagonal elements of the tridiagonal matrix.
- *> On exit, if INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> On entry, the subdiagonal elements of the tridiagonal matrix.
- *> On exit, E has been destroyed.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ,N)
- *> On entry, if COMPZ = 'V', then Z contains the unitary
- *> matrix used in the reduction to tridiagonal form.
- *> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
- *> orthonormal eigenvectors of the original Hermitian matrix,
- *> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
- *> of the symmetric tridiagonal matrix.
- *> If COMPZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1.
- *> If eigenvectors are desired, then LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
- *> If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
- *> Note that for COMPZ = 'V', then if N is less than or
- *> equal to the minimum divide size, usually 25, then LWORK need
- *> only be 1.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK))
- *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of the array RWORK.
- *> If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
- *> If COMPZ = 'V' and N > 1, LRWORK must be at least
- *> 1 + 3*N + 2*N*lg N + 4*N**2 ,
- *> where lg( N ) = smallest integer k such
- *> that 2**k >= N.
- *> If COMPZ = 'I' and N > 1, LRWORK must be at least
- *> 1 + 4*N + 2*N**2 .
- *> Note that for COMPZ = 'I' or 'V', then if N is less than or
- *> equal to the minimum divide size, usually 25, then LRWORK
- *> need only be max(1,2*(N-1)).
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
- *> If COMPZ = 'V' or N > 1, LIWORK must be at least
- *> 6 + 6*N + 5*N*lg N.
- *> If COMPZ = 'I' or N > 1, LIWORK must be at least
- *> 3 + 5*N .
- *> Note that for COMPZ = 'I' or 'V', then if N is less than or
- *> equal to the minimum divide size, usually 25, then LIWORK
- *> need only be 1.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: The algorithm failed to compute an eigenvalue while
- *> working on the submatrix lying in rows and columns
- *> INFO/(N+1) through mod(INFO,N+1).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup stedc
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
- $ LRWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER COMPZ
- INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL D( * ), E( * ), RWORK( * )
- COMPLEX WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
- $ LRWMIN, LWMIN, M, SMLSIZ, START
- REAL EPS, ORGNRM, P, TINY
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, SLANST, SROUNDUP_LWORK
- EXTERNAL ILAENV, LSAME, SLAMCH, SLANST, SROUNDUP_LWORK
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, CLACPY, CLACRM, CLAED0, CSTEQR, CSWAP,
- $ SLASCL, SLASET, SSTEDC, SSTEQR, SSTERF
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, LOG, MAX, MOD, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- IF( LSAME( COMPZ, 'N' ) ) THEN
- ICOMPZ = 0
- ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
- ICOMPZ = 1
- ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
- ICOMPZ = 2
- ELSE
- ICOMPZ = -1
- END IF
- IF( ICOMPZ.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( ( LDZ.LT.1 ) .OR.
- $ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
- INFO = -6
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Compute the workspace requirements
- *
- SMLSIZ = ILAENV( 9, 'CSTEDC', ' ', 0, 0, 0, 0 )
- IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
- LWMIN = 1
- LIWMIN = 1
- LRWMIN = 1
- ELSE IF( N.LE.SMLSIZ ) THEN
- LWMIN = 1
- LIWMIN = 1
- LRWMIN = 2*( N - 1 )
- ELSE IF( ICOMPZ.EQ.1 ) THEN
- LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- LWMIN = N*N
- LRWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
- LIWMIN = 6 + 6*N + 5*N*LGN
- ELSE IF( ICOMPZ.EQ.2 ) THEN
- LWMIN = 1
- LRWMIN = 1 + 4*N + 2*N**2
- LIWMIN = 3 + 5*N
- END IF
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -8
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -10
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CSTEDC', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- IF( N.EQ.1 ) THEN
- IF( ICOMPZ.NE.0 )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * If the following conditional clause is removed, then the routine
- * will use the Divide and Conquer routine to compute only the
- * eigenvalues, which requires (3N + 3N**2) real workspace and
- * (2 + 5N + 2N lg(N)) integer workspace.
- * Since on many architectures SSTERF is much faster than any other
- * algorithm for finding eigenvalues only, it is used here
- * as the default. If the conditional clause is removed, then
- * information on the size of workspace needs to be changed.
- *
- * If COMPZ = 'N', use SSTERF to compute the eigenvalues.
- *
- IF( ICOMPZ.EQ.0 ) THEN
- CALL SSTERF( N, D, E, INFO )
- GO TO 70
- END IF
- *
- * If N is smaller than the minimum divide size (SMLSIZ+1), then
- * solve the problem with another solver.
- *
- IF( N.LE.SMLSIZ ) THEN
- *
- CALL CSTEQR( COMPZ, N, D, E, Z, LDZ, RWORK, INFO )
- *
- ELSE
- *
- * If COMPZ = 'I', we simply call SSTEDC instead.
- *
- IF( ICOMPZ.EQ.2 ) THEN
- CALL SLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
- LL = N*N + 1
- CALL SSTEDC( 'I', N, D, E, RWORK, N,
- $ RWORK( LL ), LRWORK-LL+1, IWORK, LIWORK, INFO )
- DO 20 J = 1, N
- DO 10 I = 1, N
- Z( I, J ) = RWORK( ( J-1 )*N+I )
- 10 CONTINUE
- 20 CONTINUE
- GO TO 70
- END IF
- *
- * From now on, only option left to be handled is COMPZ = 'V',
- * i.e. ICOMPZ = 1.
- *
- * Scale.
- *
- ORGNRM = SLANST( 'M', N, D, E )
- IF( ORGNRM.EQ.ZERO )
- $ GO TO 70
- *
- EPS = SLAMCH( 'Epsilon' )
- *
- START = 1
- *
- * while ( START <= N )
- *
- 30 CONTINUE
- IF( START.LE.N ) THEN
- *
- * Let FINISH be the position of the next subdiagonal entry
- * such that E( FINISH ) <= TINY or FINISH = N if no such
- * subdiagonal exists. The matrix identified by the elements
- * between START and FINISH constitutes an independent
- * sub-problem.
- *
- FINISH = START
- 40 CONTINUE
- IF( FINISH.LT.N ) THEN
- TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
- $ SQRT( ABS( D( FINISH+1 ) ) )
- IF( ABS( E( FINISH ) ).GT.TINY ) THEN
- FINISH = FINISH + 1
- GO TO 40
- END IF
- END IF
- *
- * (Sub) Problem determined. Compute its size and solve it.
- *
- M = FINISH - START + 1
- IF( M.GT.SMLSIZ ) THEN
- *
- * Scale.
- *
- ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
- CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
- $ INFO )
- CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
- $ M-1, INFO )
- *
- CALL CLAED0( N, M, D( START ), E( START ), Z( 1, START ),
- $ LDZ, WORK, N, RWORK, IWORK, INFO )
- IF( INFO.GT.0 ) THEN
- INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
- $ MOD( INFO, ( M+1 ) ) + START - 1
- GO TO 70
- END IF
- *
- * Scale back.
- *
- CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
- $ INFO )
- *
- ELSE
- CALL SSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
- $ RWORK( M*M+1 ), INFO )
- CALL CLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
- $ RWORK( M*M+1 ) )
- CALL CLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
- IF( INFO.GT.0 ) THEN
- INFO = START*( N+1 ) + FINISH
- GO TO 70
- END IF
- END IF
- *
- START = FINISH + 1
- GO TO 30
- END IF
- *
- * endwhile
- *
- *
- * Use Selection Sort to minimize swaps of eigenvectors
- *
- DO 60 II = 2, N
- I = II - 1
- K = I
- P = D( I )
- DO 50 J = II, N
- IF( D( J ).LT.P ) THEN
- K = J
- P = D( J )
- END IF
- 50 CONTINUE
- IF( K.NE.I ) THEN
- D( K ) = D( I )
- D( I ) = P
- CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
- END IF
- 60 CONTINUE
- END IF
- *
- 70 CONTINUE
- WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- RETURN
- *
- * End of CSTEDC
- *
- END
|