|
- *> \brief \b CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLASET + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claset.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claset.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claset.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLASET( UPLO, M, N, ALPHA, BETA, A, LDA )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, M, N
- * COMPLEX ALPHA, BETA
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLASET initializes a 2-D array A to BETA on the diagonal and
- *> ALPHA on the offdiagonals.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies the part of the matrix A to be set.
- *> = 'U': Upper triangular part is set. The lower triangle
- *> is unchanged.
- *> = 'L': Lower triangular part is set. The upper triangle
- *> is unchanged.
- *> Otherwise: All of the matrix A is set.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of A.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> All the offdiagonal array elements are set to ALPHA.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX
- *> All the diagonal array elements are set to BETA.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the m by n matrix A.
- *> On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j;
- *> A(i,i) = BETA , 1 <= i <= min(m,n)
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CLASET( UPLO, M, N, ALPHA, BETA, A, LDA )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, M, N
- COMPLEX ALPHA, BETA
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER I, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MIN
- * ..
- * .. Executable Statements ..
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Set the diagonal to BETA and the strictly upper triangular
- * part of the array to ALPHA.
- *
- DO 20 J = 2, N
- DO 10 I = 1, MIN( J-1, M )
- A( I, J ) = ALPHA
- 10 CONTINUE
- 20 CONTINUE
- DO 30 I = 1, MIN( N, M )
- A( I, I ) = BETA
- 30 CONTINUE
- *
- ELSE IF( LSAME( UPLO, 'L' ) ) THEN
- *
- * Set the diagonal to BETA and the strictly lower triangular
- * part of the array to ALPHA.
- *
- DO 50 J = 1, MIN( M, N )
- DO 40 I = J + 1, M
- A( I, J ) = ALPHA
- 40 CONTINUE
- 50 CONTINUE
- DO 60 I = 1, MIN( N, M )
- A( I, I ) = BETA
- 60 CONTINUE
- *
- ELSE
- *
- * Set the array to BETA on the diagonal and ALPHA on the
- * offdiagonal.
- *
- DO 80 J = 1, N
- DO 70 I = 1, M
- A( I, J ) = ALPHA
- 70 CONTINUE
- 80 CONTINUE
- DO 90 I = 1, MIN( M, N )
- A( I, I ) = BETA
- 90 CONTINUE
- END IF
- *
- RETURN
- *
- * End of CLASET
- *
- END
|