|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b CLAIC1 applies one step of incremental condition estimation. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CLAIC1 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claic1.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claic1.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claic1.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C ) */
-
- /* INTEGER J, JOB */
- /* REAL SEST, SESTPR */
- /* COMPLEX C, GAMMA, S */
- /* COMPLEX W( J ), X( J ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CLAIC1 applies one step of incremental condition estimation in */
- /* > its simplest version: */
- /* > */
- /* > Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
- /* > lower triangular matrix L, such that */
- /* > twonorm(L*x) = sest */
- /* > Then CLAIC1 computes sestpr, s, c such that */
- /* > the vector */
- /* > [ s*x ] */
- /* > xhat = [ c ] */
- /* > is an approximate singular vector of */
- /* > [ L 0 ] */
- /* > Lhat = [ w**H gamma ] */
- /* > in the sense that */
- /* > twonorm(Lhat*xhat) = sestpr. */
- /* > */
- /* > Depending on JOB, an estimate for the largest or smallest singular */
- /* > value is computed. */
- /* > */
- /* > Note that [s c]**H and sestpr**2 is an eigenpair of the system */
- /* > */
- /* > diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] */
- /* > [ conjg(gamma) ] */
- /* > */
- /* > where alpha = x**H*w. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is INTEGER */
- /* > = 1: an estimate for the largest singular value is computed. */
- /* > = 2: an estimate for the smallest singular value is computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] J */
- /* > \verbatim */
- /* > J is INTEGER */
- /* > Length of X and W */
- /* > \endverbatim */
- /* > */
- /* > \param[in] X */
- /* > \verbatim */
- /* > X is COMPLEX array, dimension (J) */
- /* > The j-vector x. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SEST */
- /* > \verbatim */
- /* > SEST is REAL */
- /* > Estimated singular value of j by j matrix L */
- /* > \endverbatim */
- /* > */
- /* > \param[in] W */
- /* > \verbatim */
- /* > W is COMPLEX array, dimension (J) */
- /* > The j-vector w. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GAMMA */
- /* > \verbatim */
- /* > GAMMA is COMPLEX */
- /* > The diagonal element gamma. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SESTPR */
- /* > \verbatim */
- /* > SESTPR is REAL */
- /* > Estimated singular value of (j+1) by (j+1) matrix Lhat. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is COMPLEX */
- /* > Sine needed in forming xhat. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] C */
- /* > \verbatim */
- /* > C is COMPLEX */
- /* > Cosine needed in forming xhat. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void claic1_(integer *job, integer *j, complex *x, real *sest,
- complex *w, complex *gamma, real *sestpr, complex *s, complex *c__)
- {
- /* System generated locals */
- real r__1, r__2;
- complex q__1, q__2, q__3, q__4, q__5, q__6;
-
- /* Local variables */
- complex sine;
- real test, zeta1, zeta2, b, t;
- complex alpha;
- extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
- *, complex *, integer *);
- real norma, s1, s2, absgam, absalp;
- extern real slamch_(char *);
- complex cosine;
- real absest, scl, eps, tmp;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- --w;
- --x;
-
- /* Function Body */
- eps = slamch_("Epsilon");
- cdotc_(&q__1, j, &x[1], &c__1, &w[1], &c__1);
- alpha.r = q__1.r, alpha.i = q__1.i;
-
- absalp = c_abs(&alpha);
- absgam = c_abs(gamma);
- absest = abs(*sest);
-
- if (*job == 1) {
-
- /* Estimating largest singular value */
-
- /* special cases */
-
- if (*sest == 0.f) {
- s1 = f2cmax(absgam,absalp);
- if (s1 == 0.f) {
- s->r = 0.f, s->i = 0.f;
- c__->r = 1.f, c__->i = 0.f;
- *sestpr = 0.f;
- } else {
- q__1.r = alpha.r / s1, q__1.i = alpha.i / s1;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = gamma->r / s1, q__1.i = gamma->i / s1;
- c__->r = q__1.r, c__->i = q__1.i;
- r_cnjg(&q__4, s);
- q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r *
- q__4.i + s->i * q__4.r;
- r_cnjg(&q__6, c__);
- q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
- q__6.i + c__->i * q__6.r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- c_sqrt(&q__1, &q__2);
- tmp = q__1.r;
- q__1.r = s->r / tmp, q__1.i = s->i / tmp;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
- c__->r = q__1.r, c__->i = q__1.i;
- *sestpr = s1 * tmp;
- }
- return;
- } else if (absgam <= eps * absest) {
- s->r = 1.f, s->i = 0.f;
- c__->r = 0.f, c__->i = 0.f;
- tmp = f2cmax(absest,absalp);
- s1 = absest / tmp;
- s2 = absalp / tmp;
- *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
- return;
- } else if (absalp <= eps * absest) {
- s1 = absgam;
- s2 = absest;
- if (s1 <= s2) {
- s->r = 1.f, s->i = 0.f;
- c__->r = 0.f, c__->i = 0.f;
- *sestpr = s2;
- } else {
- s->r = 0.f, s->i = 0.f;
- c__->r = 1.f, c__->i = 0.f;
- *sestpr = s1;
- }
- return;
- } else if (absest <= eps * absalp || absest <= eps * absgam) {
- s1 = absgam;
- s2 = absalp;
- if (s1 <= s2) {
- tmp = s1 / s2;
- scl = sqrt(tmp * tmp + 1.f);
- *sestpr = s2 * scl;
- q__2.r = alpha.r / s2, q__2.i = alpha.i / s2;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- s->r = q__1.r, s->i = q__1.i;
- q__2.r = gamma->r / s2, q__2.i = gamma->i / s2;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- c__->r = q__1.r, c__->i = q__1.i;
- } else {
- tmp = s2 / s1;
- scl = sqrt(tmp * tmp + 1.f);
- *sestpr = s1 * scl;
- q__2.r = alpha.r / s1, q__2.i = alpha.i / s1;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- s->r = q__1.r, s->i = q__1.i;
- q__2.r = gamma->r / s1, q__2.i = gamma->i / s1;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- c__->r = q__1.r, c__->i = q__1.i;
- }
- return;
- } else {
-
- /* normal case */
-
- zeta1 = absalp / absest;
- zeta2 = absgam / absest;
-
- b = (1.f - zeta1 * zeta1 - zeta2 * zeta2) * .5f;
- r__1 = zeta1 * zeta1;
- c__->r = r__1, c__->i = 0.f;
- if (b > 0.f) {
- r__1 = b * b;
- q__4.r = r__1 + c__->r, q__4.i = c__->i;
- c_sqrt(&q__3, &q__4);
- q__2.r = b + q__3.r, q__2.i = q__3.i;
- c_div(&q__1, c__, &q__2);
- t = q__1.r;
- } else {
- r__1 = b * b;
- q__3.r = r__1 + c__->r, q__3.i = c__->i;
- c_sqrt(&q__2, &q__3);
- q__1.r = q__2.r - b, q__1.i = q__2.i;
- t = q__1.r;
- }
-
- q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- q__1.r = q__2.r / t, q__1.i = q__2.i / t;
- sine.r = q__1.r, sine.i = q__1.i;
- q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- r__1 = t + 1.f;
- q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
- cosine.r = q__1.r, cosine.i = q__1.i;
- r_cnjg(&q__4, &sine);
- q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
- q__4.i + sine.i * q__4.r;
- r_cnjg(&q__6, &cosine);
- q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
- * q__6.i + cosine.i * q__6.r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- c_sqrt(&q__1, &q__2);
- tmp = q__1.r;
- q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
- c__->r = q__1.r, c__->i = q__1.i;
- *sestpr = sqrt(t + 1.f) * absest;
- return;
- }
-
- } else if (*job == 2) {
-
- /* Estimating smallest singular value */
-
- /* special cases */
-
- if (*sest == 0.f) {
- *sestpr = 0.f;
- if (f2cmax(absgam,absalp) == 0.f) {
- sine.r = 1.f, sine.i = 0.f;
- cosine.r = 0.f, cosine.i = 0.f;
- } else {
- r_cnjg(&q__2, gamma);
- q__1.r = -q__2.r, q__1.i = -q__2.i;
- sine.r = q__1.r, sine.i = q__1.i;
- r_cnjg(&q__1, &alpha);
- cosine.r = q__1.r, cosine.i = q__1.i;
- }
- /* Computing MAX */
- r__1 = c_abs(&sine), r__2 = c_abs(&cosine);
- s1 = f2cmax(r__1,r__2);
- q__1.r = sine.r / s1, q__1.i = sine.i / s1;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = cosine.r / s1, q__1.i = cosine.i / s1;
- c__->r = q__1.r, c__->i = q__1.i;
- r_cnjg(&q__4, s);
- q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r * q__4.i +
- s->i * q__4.r;
- r_cnjg(&q__6, c__);
- q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
- q__6.i + c__->i * q__6.r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- c_sqrt(&q__1, &q__2);
- tmp = q__1.r;
- q__1.r = s->r / tmp, q__1.i = s->i / tmp;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
- c__->r = q__1.r, c__->i = q__1.i;
- return;
- } else if (absgam <= eps * absest) {
- s->r = 0.f, s->i = 0.f;
- c__->r = 1.f, c__->i = 0.f;
- *sestpr = absgam;
- return;
- } else if (absalp <= eps * absest) {
- s1 = absgam;
- s2 = absest;
- if (s1 <= s2) {
- s->r = 0.f, s->i = 0.f;
- c__->r = 1.f, c__->i = 0.f;
- *sestpr = s1;
- } else {
- s->r = 1.f, s->i = 0.f;
- c__->r = 0.f, c__->i = 0.f;
- *sestpr = s2;
- }
- return;
- } else if (absest <= eps * absalp || absest <= eps * absgam) {
- s1 = absgam;
- s2 = absalp;
- if (s1 <= s2) {
- tmp = s1 / s2;
- scl = sqrt(tmp * tmp + 1.f);
- *sestpr = absest * (tmp / scl);
- r_cnjg(&q__4, gamma);
- q__3.r = q__4.r / s2, q__3.i = q__4.i / s2;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- s->r = q__1.r, s->i = q__1.i;
- r_cnjg(&q__3, &alpha);
- q__2.r = q__3.r / s2, q__2.i = q__3.i / s2;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- c__->r = q__1.r, c__->i = q__1.i;
- } else {
- tmp = s2 / s1;
- scl = sqrt(tmp * tmp + 1.f);
- *sestpr = absest / scl;
- r_cnjg(&q__4, gamma);
- q__3.r = q__4.r / s1, q__3.i = q__4.i / s1;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- s->r = q__1.r, s->i = q__1.i;
- r_cnjg(&q__3, &alpha);
- q__2.r = q__3.r / s1, q__2.i = q__3.i / s1;
- q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
- c__->r = q__1.r, c__->i = q__1.i;
- }
- return;
- } else {
-
- /* normal case */
-
- zeta1 = absalp / absest;
- zeta2 = absgam / absest;
-
- /* Computing MAX */
- r__1 = zeta1 * zeta1 + 1.f + zeta1 * zeta2, r__2 = zeta1 * zeta2
- + zeta2 * zeta2;
- norma = f2cmax(r__1,r__2);
-
- /* See if root is closer to zero or to ONE */
-
- test = (zeta1 - zeta2) * 2.f * (zeta1 + zeta2) + 1.f;
- if (test >= 0.f) {
-
- /* root is close to zero, compute directly */
-
- b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.f) * .5f;
- r__1 = zeta2 * zeta2;
- c__->r = r__1, c__->i = 0.f;
- r__2 = b * b;
- q__2.r = r__2 - c__->r, q__2.i = -c__->i;
- r__1 = b + sqrt(c_abs(&q__2));
- q__1.r = c__->r / r__1, q__1.i = c__->i / r__1;
- t = q__1.r;
- q__2.r = alpha.r / absest, q__2.i = alpha.i / absest;
- r__1 = 1.f - t;
- q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
- sine.r = q__1.r, sine.i = q__1.i;
- q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- q__1.r = q__2.r / t, q__1.i = q__2.i / t;
- cosine.r = q__1.r, cosine.i = q__1.i;
- *sestpr = sqrt(t + eps * 4.f * eps * norma) * absest;
- } else {
-
- /* root is closer to ONE, shift by that amount */
-
- b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.f) * .5f;
- r__1 = zeta1 * zeta1;
- c__->r = r__1, c__->i = 0.f;
- if (b >= 0.f) {
- q__2.r = -c__->r, q__2.i = -c__->i;
- r__1 = b * b;
- q__5.r = r__1 + c__->r, q__5.i = c__->i;
- c_sqrt(&q__4, &q__5);
- q__3.r = b + q__4.r, q__3.i = q__4.i;
- c_div(&q__1, &q__2, &q__3);
- t = q__1.r;
- } else {
- r__1 = b * b;
- q__3.r = r__1 + c__->r, q__3.i = c__->i;
- c_sqrt(&q__2, &q__3);
- q__1.r = b - q__2.r, q__1.i = -q__2.i;
- t = q__1.r;
- }
- q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- q__1.r = q__2.r / t, q__1.i = q__2.i / t;
- sine.r = q__1.r, sine.i = q__1.i;
- q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- r__1 = t + 1.f;
- q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
- cosine.r = q__1.r, cosine.i = q__1.i;
- *sestpr = sqrt(t + 1.f + eps * 4.f * eps * norma) * absest;
- }
- r_cnjg(&q__4, &sine);
- q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
- q__4.i + sine.i * q__4.r;
- r_cnjg(&q__6, &cosine);
- q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
- * q__6.i + cosine.i * q__6.r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- c_sqrt(&q__1, &q__2);
- tmp = q__1.r;
- q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
- s->r = q__1.r, s->i = q__1.i;
- q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
- c__->r = q__1.r, c__->i = q__1.i;
- return;
-
- }
- }
- return;
-
- /* End of CLAIC1 */
-
- } /* claic1_ */
|