|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(_Fcomplex x, integer n) {
- _Fcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1./x._Val[0], x._Val[1]=1./x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow = _FCmulcc (pow,x);
- if(u >>= 1) x = _FCmulcc (x,x);
- else break;
- }
- }
- return pow;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__2 = 2;
-
- /* > \brief \b CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
- e double-shift/single-shift QR algorithm. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CLAHQR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahqr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahqr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahqr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
- /* IHIZ, Z, LDZ, INFO ) */
-
- /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
- /* LOGICAL WANTT, WANTZ */
- /* COMPLEX H( LDH, * ), W( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CLAHQR is an auxiliary routine called by CHSEQR to update the */
- /* > eigenvalues and Schur decomposition already computed by CHSEQR, by */
- /* > dealing with the Hessenberg submatrix in rows and columns ILO to */
- /* > IHI. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > = .TRUE. : the full Schur form T is required; */
- /* > = .FALSE.: only eigenvalues are required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > = .TRUE. : the matrix of Schur vectors Z is required; */
- /* > = .FALSE.: Schur vectors are not required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > It is assumed that H is already upper triangular in rows and */
- /* > columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). */
- /* > CLAHQR works primarily with the Hessenberg submatrix in rows */
- /* > and columns ILO to IHI, but applies transformations to all of */
- /* > H if WANTT is .TRUE.. */
- /* > 1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is COMPLEX array, dimension (LDH,N) */
- /* > On entry, the upper Hessenberg matrix H. */
- /* > On exit, if INFO is zero and if WANTT is .TRUE., then H */
- /* > is upper triangular in rows and columns ILO:IHI. If INFO */
- /* > is zero and if WANTT is .FALSE., then the contents of H */
- /* > are unspecified on exit. The output state of H in case */
- /* > INF is positive is below under the description of INFO. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is COMPLEX array, dimension (N) */
- /* > The computed eigenvalues ILO to IHI are stored in the */
- /* > corresponding elements of W. If WANTT is .TRUE., the */
- /* > eigenvalues are stored in the same order as on the diagonal */
- /* > of the Schur form returned in H, with W(i) = H(i,i). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. */
- /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX array, dimension (LDZ,N) */
- /* > If WANTZ is .TRUE., on entry Z must contain the current */
- /* > matrix Z of transformations accumulated by CHSEQR, and on */
- /* > exit Z has been updated; transformations are applied only to */
- /* > the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
- /* > If WANTZ is .FALSE., Z is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > > 0: if INFO = i, CLAHQR failed to compute all the */
- /* > eigenvalues ILO to IHI in a total of 30 iterations */
- /* > per eigenvalue; elements i+1:ihi of W contain */
- /* > those eigenvalues which have been successfully */
- /* > computed. */
- /* > */
- /* > If INFO > 0 and WANTT is .FALSE., then on exit, */
- /* > the remaining unconverged eigenvalues are the */
- /* > eigenvalues of the upper Hessenberg matrix */
- /* > rows and columns ILO through INFO of the final, */
- /* > output value of H. */
- /* > */
- /* > If INFO > 0 and WANTT is .TRUE., then on exit */
- /* > (*) (initial value of H)*U = U*(final value of H) */
- /* > where U is an orthogonal matrix. The final */
- /* > value of H is upper Hessenberg and triangular in */
- /* > rows and columns INFO+1 through IHI. */
- /* > */
- /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
- /* > (final value of Z) = (initial value of Z)*U */
- /* > where U is the orthogonal matrix in (*) */
- /* > (regardless of the value of WANTT.) */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > 02-96 Based on modifications by */
- /* > David Day, Sandia National Laboratory, USA */
- /* > */
- /* > 12-04 Further modifications by */
- /* > Ralph Byers, University of Kansas, USA */
- /* > This is a modified version of CLAHQR from LAPACK version 3.0. */
- /* > It is (1) more robust against overflow and underflow and */
- /* > (2) adopts the more conservative Ahues & Tisseur stopping */
- /* > criterion (LAWN 122, 1997). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void clahqr_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w,
- integer *iloz, integer *ihiz, complex *z__, integer *ldz, integer *
- info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- real r__1, r__2, r__3, r__4, r__5, r__6;
- complex q__1, q__2, q__3, q__4, q__5, q__6, q__7;
-
- /* Local variables */
- complex temp;
- integer i__, j, k, l, m;
- real s;
- complex t, u, v[2], x, y;
- extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
- integer *), ccopy_(integer *, complex *, integer *, complex *,
- integer *);
- integer itmax;
- real rtemp;
- integer i1, i2;
- complex t1;
- real t2;
- complex v2;
- real aa, ab, ba, bb, h10;
- complex h11;
- real h21;
- complex h22, sc;
- integer nh;
- extern /* Subroutine */ void slabad_(real *, real *), clarfg_(integer *,
- complex *, complex *, integer *, complex *);
- extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
- extern real slamch_(char *);
- integer nz;
- real sx, safmin, safmax, smlnum;
- integer jhi;
- complex h11s;
- integer jlo, its;
- real ulp;
- complex sum;
- real tst;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ========================================================= */
-
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
- if (*ilo == *ihi) {
- i__1 = *ilo;
- i__2 = *ilo + *ilo * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
- return;
- }
-
- /* ==== clear out the trash ==== */
- i__1 = *ihi - 3;
- for (j = *ilo; j <= i__1; ++j) {
- i__2 = j + 2 + j * h_dim1;
- h__[i__2].r = 0.f, h__[i__2].i = 0.f;
- i__2 = j + 3 + j * h_dim1;
- h__[i__2].r = 0.f, h__[i__2].i = 0.f;
- /* L10: */
- }
- if (*ilo <= *ihi - 2) {
- i__1 = *ihi + (*ihi - 2) * h_dim1;
- h__[i__1].r = 0.f, h__[i__1].i = 0.f;
- }
- /* ==== ensure that subdiagonal entries are real ==== */
- if (*wantt) {
- jlo = 1;
- jhi = *n;
- } else {
- jlo = *ilo;
- jhi = *ihi;
- }
- i__1 = *ihi;
- for (i__ = *ilo + 1; i__ <= i__1; ++i__) {
- if (r_imag(&h__[i__ + (i__ - 1) * h_dim1]) != 0.f) {
- /* ==== The following redundant normalization */
- /* . avoids problems with both gradual and */
- /* . sudden underflow in ABS(H(I,I-1)) ==== */
- i__2 = i__ + (i__ - 1) * h_dim1;
- i__3 = i__ + (i__ - 1) * h_dim1;
- r__3 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[i__
- + (i__ - 1) * h_dim1]), abs(r__2));
- q__1.r = h__[i__2].r / r__3, q__1.i = h__[i__2].i / r__3;
- sc.r = q__1.r, sc.i = q__1.i;
- r_cnjg(&q__2, &sc);
- r__1 = c_abs(&sc);
- q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
- sc.r = q__1.r, sc.i = q__1.i;
- i__2 = i__ + (i__ - 1) * h_dim1;
- r__1 = c_abs(&h__[i__ + (i__ - 1) * h_dim1]);
- h__[i__2].r = r__1, h__[i__2].i = 0.f;
- i__2 = jhi - i__ + 1;
- cscal_(&i__2, &sc, &h__[i__ + i__ * h_dim1], ldh);
- /* Computing MIN */
- i__3 = jhi, i__4 = i__ + 1;
- i__2 = f2cmin(i__3,i__4) - jlo + 1;
- r_cnjg(&q__1, &sc);
- cscal_(&i__2, &q__1, &h__[jlo + i__ * h_dim1], &c__1);
- if (*wantz) {
- i__2 = *ihiz - *iloz + 1;
- r_cnjg(&q__1, &sc);
- cscal_(&i__2, &q__1, &z__[*iloz + i__ * z_dim1], &c__1);
- }
- }
- /* L20: */
- }
-
- nh = *ihi - *ilo + 1;
- nz = *ihiz - *iloz + 1;
-
- /* Set machine-dependent constants for the stopping criterion. */
-
- safmin = slamch_("SAFE MINIMUM");
- safmax = 1.f / safmin;
- slabad_(&safmin, &safmax);
- ulp = slamch_("PRECISION");
- smlnum = safmin * ((real) nh / ulp);
-
- /* I1 and I2 are the indices of the first row and last column of H */
- /* to which transformations must be applied. If eigenvalues only are */
- /* being computed, I1 and I2 are set inside the main loop. */
-
- if (*wantt) {
- i1 = 1;
- i2 = *n;
- }
-
- /* ITMAX is the total number of QR iterations allowed. */
-
- itmax = f2cmax(10,nh) * 30;
-
- /* The main loop begins here. I is the loop index and decreases from */
- /* IHI to ILO in steps of 1. Each iteration of the loop works */
- /* with the active submatrix in rows and columns L to I. */
- /* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or */
- /* H(L,L-1) is negligible so that the matrix splits. */
-
- i__ = *ihi;
- L30:
- if (i__ < *ilo) {
- goto L150;
- }
-
- /* Perform QR iterations on rows and columns ILO to I until a */
- /* submatrix of order 1 splits off at the bottom because a */
- /* subdiagonal element has become negligible. */
-
- l = *ilo;
- i__1 = itmax;
- for (its = 0; its <= i__1; ++its) {
-
- /* Look for a single small subdiagonal element. */
-
- i__2 = l + 1;
- for (k = i__; k >= i__2; --k) {
- i__3 = k + (k - 1) * h_dim1;
- if ((r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[k + (k
- - 1) * h_dim1]), abs(r__2)) <= smlnum) {
- goto L50;
- }
- i__3 = k - 1 + (k - 1) * h_dim1;
- i__4 = k + k * h_dim1;
- tst = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[k - 1
- + (k - 1) * h_dim1]), abs(r__2)) + ((r__3 = h__[i__4].r,
- abs(r__3)) + (r__4 = r_imag(&h__[k + k * h_dim1]), abs(
- r__4)));
- if (tst == 0.f) {
- if (k - 2 >= *ilo) {
- i__3 = k - 1 + (k - 2) * h_dim1;
- tst += (r__1 = h__[i__3].r, abs(r__1));
- }
- if (k + 1 <= *ihi) {
- i__3 = k + 1 + k * h_dim1;
- tst += (r__1 = h__[i__3].r, abs(r__1));
- }
- }
- /* ==== The following is a conservative small subdiagonal */
- /* . deflation criterion due to Ahues & Tisseur (LAWN 122, */
- /* . 1997). It has better mathematical foundation and */
- /* . improves accuracy in some examples. ==== */
- i__3 = k + (k - 1) * h_dim1;
- if ((r__1 = h__[i__3].r, abs(r__1)) <= ulp * tst) {
- /* Computing MAX */
- i__3 = k + (k - 1) * h_dim1;
- i__4 = k - 1 + k * h_dim1;
- r__5 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[
- k + (k - 1) * h_dim1]), abs(r__2)), r__6 = (r__3 =
- h__[i__4].r, abs(r__3)) + (r__4 = r_imag(&h__[k - 1 +
- k * h_dim1]), abs(r__4));
- ab = f2cmax(r__5,r__6);
- /* Computing MIN */
- i__3 = k + (k - 1) * h_dim1;
- i__4 = k - 1 + k * h_dim1;
- r__5 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[
- k + (k - 1) * h_dim1]), abs(r__2)), r__6 = (r__3 =
- h__[i__4].r, abs(r__3)) + (r__4 = r_imag(&h__[k - 1 +
- k * h_dim1]), abs(r__4));
- ba = f2cmin(r__5,r__6);
- i__3 = k - 1 + (k - 1) * h_dim1;
- i__4 = k + k * h_dim1;
- q__2.r = h__[i__3].r - h__[i__4].r, q__2.i = h__[i__3].i -
- h__[i__4].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MAX */
- i__5 = k + k * h_dim1;
- r__5 = (r__1 = h__[i__5].r, abs(r__1)) + (r__2 = r_imag(&h__[
- k + k * h_dim1]), abs(r__2)), r__6 = (r__3 = q__1.r,
- abs(r__3)) + (r__4 = r_imag(&q__1), abs(r__4));
- aa = f2cmax(r__5,r__6);
- i__3 = k - 1 + (k - 1) * h_dim1;
- i__4 = k + k * h_dim1;
- q__2.r = h__[i__3].r - h__[i__4].r, q__2.i = h__[i__3].i -
- h__[i__4].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MIN */
- i__5 = k + k * h_dim1;
- r__5 = (r__1 = h__[i__5].r, abs(r__1)) + (r__2 = r_imag(&h__[
- k + k * h_dim1]), abs(r__2)), r__6 = (r__3 = q__1.r,
- abs(r__3)) + (r__4 = r_imag(&q__1), abs(r__4));
- bb = f2cmin(r__5,r__6);
- s = aa + ab;
- /* Computing MAX */
- r__1 = smlnum, r__2 = ulp * (bb * (aa / s));
- if (ba * (ab / s) <= f2cmax(r__1,r__2)) {
- goto L50;
- }
- }
- /* L40: */
- }
- L50:
- l = k;
- if (l > *ilo) {
-
- /* H(L,L-1) is negligible */
-
- i__2 = l + (l - 1) * h_dim1;
- h__[i__2].r = 0.f, h__[i__2].i = 0.f;
- }
-
- /* Exit from loop if a submatrix of order 1 has split off. */
-
- if (l >= i__) {
- goto L140;
- }
-
- /* Now the active submatrix is in rows and columns L to I. If */
- /* eigenvalues only are being computed, only the active submatrix */
- /* need be transformed. */
-
- if (! (*wantt)) {
- i1 = l;
- i2 = i__;
- }
-
- if (its == 10) {
-
- /* Exceptional shift. */
-
- i__2 = l + 1 + l * h_dim1;
- s = (r__1 = h__[i__2].r, abs(r__1)) * .75f;
- i__2 = l + l * h_dim1;
- q__1.r = s + h__[i__2].r, q__1.i = h__[i__2].i;
- t.r = q__1.r, t.i = q__1.i;
- } else if (its == 20) {
-
- /* Exceptional shift. */
-
- i__2 = i__ + (i__ - 1) * h_dim1;
- s = (r__1 = h__[i__2].r, abs(r__1)) * .75f;
- i__2 = i__ + i__ * h_dim1;
- q__1.r = s + h__[i__2].r, q__1.i = h__[i__2].i;
- t.r = q__1.r, t.i = q__1.i;
- } else {
-
- /* Wilkinson's shift. */
-
- i__2 = i__ + i__ * h_dim1;
- t.r = h__[i__2].r, t.i = h__[i__2].i;
- c_sqrt(&q__2, &h__[i__ - 1 + i__ * h_dim1]);
- c_sqrt(&q__3, &h__[i__ + (i__ - 1) * h_dim1]);
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r *
- q__3.i + q__2.i * q__3.r;
- u.r = q__1.r, u.i = q__1.i;
- s = (r__1 = u.r, abs(r__1)) + (r__2 = r_imag(&u), abs(r__2));
- if (s != 0.f) {
- i__2 = i__ - 1 + (i__ - 1) * h_dim1;
- q__2.r = h__[i__2].r - t.r, q__2.i = h__[i__2].i - t.i;
- q__1.r = q__2.r * .5f, q__1.i = q__2.i * .5f;
- x.r = q__1.r, x.i = q__1.i;
- sx = (r__1 = x.r, abs(r__1)) + (r__2 = r_imag(&x), abs(r__2));
- /* Computing MAX */
- r__3 = s, r__4 = (r__1 = x.r, abs(r__1)) + (r__2 = r_imag(&x),
- abs(r__2));
- s = f2cmax(r__3,r__4);
- q__5.r = x.r / s, q__5.i = x.i / s;
- pow_ci(&q__4, &q__5, &c__2);
- q__7.r = u.r / s, q__7.i = u.i / s;
- pow_ci(&q__6, &q__7, &c__2);
- q__3.r = q__4.r + q__6.r, q__3.i = q__4.i + q__6.i;
- c_sqrt(&q__2, &q__3);
- q__1.r = s * q__2.r, q__1.i = s * q__2.i;
- y.r = q__1.r, y.i = q__1.i;
- if (sx > 0.f) {
- q__1.r = x.r / sx, q__1.i = x.i / sx;
- q__2.r = x.r / sx, q__2.i = x.i / sx;
- if (q__1.r * y.r + r_imag(&q__2) * r_imag(&y) < 0.f) {
- q__3.r = -y.r, q__3.i = -y.i;
- y.r = q__3.r, y.i = q__3.i;
- }
- }
- q__4.r = x.r + y.r, q__4.i = x.i + y.i;
- cladiv_(&q__3, &u, &q__4);
- q__2.r = u.r * q__3.r - u.i * q__3.i, q__2.i = u.r * q__3.i +
- u.i * q__3.r;
- q__1.r = t.r - q__2.r, q__1.i = t.i - q__2.i;
- t.r = q__1.r, t.i = q__1.i;
- }
- }
-
- /* Look for two consecutive small subdiagonal elements. */
-
- i__2 = l + 1;
- for (m = i__ - 1; m >= i__2; --m) {
-
- /* Determine the effect of starting the single-shift QR */
- /* iteration at row M, and see if this would make H(M,M-1) */
- /* negligible. */
-
- i__3 = m + m * h_dim1;
- h11.r = h__[i__3].r, h11.i = h__[i__3].i;
- i__3 = m + 1 + (m + 1) * h_dim1;
- h22.r = h__[i__3].r, h22.i = h__[i__3].i;
- q__1.r = h11.r - t.r, q__1.i = h11.i - t.i;
- h11s.r = q__1.r, h11s.i = q__1.i;
- i__3 = m + 1 + m * h_dim1;
- h21 = h__[i__3].r;
- s = (r__1 = h11s.r, abs(r__1)) + (r__2 = r_imag(&h11s), abs(r__2))
- + abs(h21);
- q__1.r = h11s.r / s, q__1.i = h11s.i / s;
- h11s.r = q__1.r, h11s.i = q__1.i;
- h21 /= s;
- v[0].r = h11s.r, v[0].i = h11s.i;
- v[1].r = h21, v[1].i = 0.f;
- i__3 = m + (m - 1) * h_dim1;
- h10 = h__[i__3].r;
- if (abs(h10) * abs(h21) <= ulp * (((r__1 = h11s.r, abs(r__1)) + (
- r__2 = r_imag(&h11s), abs(r__2))) * ((r__3 = h11.r, abs(
- r__3)) + (r__4 = r_imag(&h11), abs(r__4)) + ((r__5 =
- h22.r, abs(r__5)) + (r__6 = r_imag(&h22), abs(r__6)))))) {
- goto L70;
- }
- /* L60: */
- }
- i__2 = l + l * h_dim1;
- h11.r = h__[i__2].r, h11.i = h__[i__2].i;
- i__2 = l + 1 + (l + 1) * h_dim1;
- h22.r = h__[i__2].r, h22.i = h__[i__2].i;
- q__1.r = h11.r - t.r, q__1.i = h11.i - t.i;
- h11s.r = q__1.r, h11s.i = q__1.i;
- i__2 = l + 1 + l * h_dim1;
- h21 = h__[i__2].r;
- s = (r__1 = h11s.r, abs(r__1)) + (r__2 = r_imag(&h11s), abs(r__2)) +
- abs(h21);
- q__1.r = h11s.r / s, q__1.i = h11s.i / s;
- h11s.r = q__1.r, h11s.i = q__1.i;
- h21 /= s;
- v[0].r = h11s.r, v[0].i = h11s.i;
- v[1].r = h21, v[1].i = 0.f;
- L70:
-
- /* Single-shift QR step */
-
- i__2 = i__ - 1;
- for (k = m; k <= i__2; ++k) {
-
- /* The first iteration of this loop determines a reflection G */
- /* from the vector V and applies it from left and right to H, */
- /* thus creating a nonzero bulge below the subdiagonal. */
-
- /* Each subsequent iteration determines a reflection G to */
- /* restore the Hessenberg form in the (K-1)th column, and thus */
- /* chases the bulge one step toward the bottom of the active */
- /* submatrix. */
-
- /* V(2) is always real before the call to CLARFG, and hence */
- /* after the call T2 ( = T1*V(2) ) is also real. */
-
- if (k > m) {
- ccopy_(&c__2, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
- }
- clarfg_(&c__2, v, &v[1], &c__1, &t1);
- if (k > m) {
- i__3 = k + (k - 1) * h_dim1;
- h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
- i__3 = k + 1 + (k - 1) * h_dim1;
- h__[i__3].r = 0.f, h__[i__3].i = 0.f;
- }
- v2.r = v[1].r, v2.i = v[1].i;
- q__1.r = t1.r * v2.r - t1.i * v2.i, q__1.i = t1.r * v2.i + t1.i *
- v2.r;
- t2 = q__1.r;
-
- /* Apply G from the left to transform the rows of the matrix */
- /* in columns K to I2. */
-
- i__3 = i2;
- for (j = k; j <= i__3; ++j) {
- r_cnjg(&q__3, &t1);
- i__4 = k + j * h_dim1;
- q__2.r = q__3.r * h__[i__4].r - q__3.i * h__[i__4].i, q__2.i =
- q__3.r * h__[i__4].i + q__3.i * h__[i__4].r;
- i__5 = k + 1 + j * h_dim1;
- q__4.r = t2 * h__[i__5].r, q__4.i = t2 * h__[i__5].i;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- sum.r = q__1.r, sum.i = q__1.i;
- i__4 = k + j * h_dim1;
- i__5 = k + j * h_dim1;
- q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 1 + j * h_dim1;
- i__5 = k + 1 + j * h_dim1;
- q__2.r = sum.r * v2.r - sum.i * v2.i, q__2.i = sum.r * v2.i +
- sum.i * v2.r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- /* L80: */
- }
-
- /* Apply G from the right to transform the columns of the */
- /* matrix in rows I1 to f2cmin(K+2,I). */
-
- /* Computing MIN */
- i__4 = k + 2;
- i__3 = f2cmin(i__4,i__);
- for (j = i1; j <= i__3; ++j) {
- i__4 = j + k * h_dim1;
- q__2.r = t1.r * h__[i__4].r - t1.i * h__[i__4].i, q__2.i =
- t1.r * h__[i__4].i + t1.i * h__[i__4].r;
- i__5 = j + (k + 1) * h_dim1;
- q__3.r = t2 * h__[i__5].r, q__3.i = t2 * h__[i__5].i;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- sum.r = q__1.r, sum.i = q__1.i;
- i__4 = j + k * h_dim1;
- i__5 = j + k * h_dim1;
- q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = j + (k + 1) * h_dim1;
- i__5 = j + (k + 1) * h_dim1;
- r_cnjg(&q__3, &v2);
- q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r *
- q__3.i + sum.i * q__3.r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- /* L90: */
- }
-
- if (*wantz) {
-
- /* Accumulate transformations in the matrix Z */
-
- i__3 = *ihiz;
- for (j = *iloz; j <= i__3; ++j) {
- i__4 = j + k * z_dim1;
- q__2.r = t1.r * z__[i__4].r - t1.i * z__[i__4].i, q__2.i =
- t1.r * z__[i__4].i + t1.i * z__[i__4].r;
- i__5 = j + (k + 1) * z_dim1;
- q__3.r = t2 * z__[i__5].r, q__3.i = t2 * z__[i__5].i;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- sum.r = q__1.r, sum.i = q__1.i;
- i__4 = j + k * z_dim1;
- i__5 = j + k * z_dim1;
- q__1.r = z__[i__5].r - sum.r, q__1.i = z__[i__5].i -
- sum.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- i__4 = j + (k + 1) * z_dim1;
- i__5 = j + (k + 1) * z_dim1;
- r_cnjg(&q__3, &v2);
- q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r *
- q__3.i + sum.i * q__3.r;
- q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
- q__2.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- /* L100: */
- }
- }
-
- if (k == m && m > l) {
-
- /* If the QR step was started at row M > L because two */
- /* consecutive small subdiagonals were found, then extra */
- /* scaling must be performed to ensure that H(M,M-1) remains */
- /* real. */
-
- q__1.r = 1.f - t1.r, q__1.i = 0.f - t1.i;
- temp.r = q__1.r, temp.i = q__1.i;
- r__1 = c_abs(&temp);
- q__1.r = temp.r / r__1, q__1.i = temp.i / r__1;
- temp.r = q__1.r, temp.i = q__1.i;
- i__3 = m + 1 + m * h_dim1;
- i__4 = m + 1 + m * h_dim1;
- r_cnjg(&q__2, &temp);
- q__1.r = h__[i__4].r * q__2.r - h__[i__4].i * q__2.i, q__1.i =
- h__[i__4].r * q__2.i + h__[i__4].i * q__2.r;
- h__[i__3].r = q__1.r, h__[i__3].i = q__1.i;
- if (m + 2 <= i__) {
- i__3 = m + 2 + (m + 1) * h_dim1;
- i__4 = m + 2 + (m + 1) * h_dim1;
- q__1.r = h__[i__4].r * temp.r - h__[i__4].i * temp.i,
- q__1.i = h__[i__4].r * temp.i + h__[i__4].i *
- temp.r;
- h__[i__3].r = q__1.r, h__[i__3].i = q__1.i;
- }
- i__3 = i__;
- for (j = m; j <= i__3; ++j) {
- if (j != m + 1) {
- if (i2 > j) {
- i__4 = i2 - j;
- cscal_(&i__4, &temp, &h__[j + (j + 1) * h_dim1],
- ldh);
- }
- i__4 = j - i1;
- r_cnjg(&q__1, &temp);
- cscal_(&i__4, &q__1, &h__[i1 + j * h_dim1], &c__1);
- if (*wantz) {
- r_cnjg(&q__1, &temp);
- cscal_(&nz, &q__1, &z__[*iloz + j * z_dim1], &
- c__1);
- }
- }
- /* L110: */
- }
- }
- /* L120: */
- }
-
- /* Ensure that H(I,I-1) is real. */
-
- i__2 = i__ + (i__ - 1) * h_dim1;
- temp.r = h__[i__2].r, temp.i = h__[i__2].i;
- if (r_imag(&temp) != 0.f) {
- rtemp = c_abs(&temp);
- i__2 = i__ + (i__ - 1) * h_dim1;
- h__[i__2].r = rtemp, h__[i__2].i = 0.f;
- q__1.r = temp.r / rtemp, q__1.i = temp.i / rtemp;
- temp.r = q__1.r, temp.i = q__1.i;
- if (i2 > i__) {
- i__2 = i2 - i__;
- r_cnjg(&q__1, &temp);
- cscal_(&i__2, &q__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
- }
- i__2 = i__ - i1;
- cscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
- if (*wantz) {
- cscal_(&nz, &temp, &z__[*iloz + i__ * z_dim1], &c__1);
- }
- }
-
- /* L130: */
- }
-
- /* Failure to converge in remaining number of iterations */
-
- *info = i__;
- return;
-
- L140:
-
- /* H(I,I-1) is negligible: one eigenvalue has converged. */
-
- i__1 = i__;
- i__2 = i__ + i__ * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
-
- /* return to start of the main loop with new value of I. */
-
- i__ = l - 1;
- goto L30;
-
- L150:
- return;
-
- /* End of CLAHQR */
-
- } /* clahqr_ */
|