|
- *> \brief \b CLAED0 used by CSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAED0 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed0.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed0.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed0.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDQ, LDQS, N, QSIZ
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL D( * ), E( * ), RWORK( * )
- * COMPLEX Q( LDQ, * ), QSTORE( LDQS, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Using the divide and conquer method, CLAED0 computes all eigenvalues
- *> of a symmetric tridiagonal matrix which is one diagonal block of
- *> those from reducing a dense or band Hermitian matrix and
- *> corresponding eigenvectors of the dense or band matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] QSIZ
- *> \verbatim
- *> QSIZ is INTEGER
- *> The dimension of the unitary matrix used to reduce
- *> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the diagonal elements of the tridiagonal matrix.
- *> On exit, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> On entry, the off-diagonal elements of the tridiagonal matrix.
- *> On exit, E has been destroyed.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is COMPLEX array, dimension (LDQ,N)
- *> On entry, Q must contain an QSIZ x N matrix whose columns
- *> unitarily orthonormal. It is a part of the unitary matrix
- *> that reduces the full dense Hermitian matrix to a
- *> (reducible) symmetric tridiagonal matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array,
- *> the dimension of IWORK must be at least
- *> 6 + 6*N + 5*N*lg N
- *> ( lg( N ) = smallest integer k
- *> such that 2^k >= N )
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array,
- *> dimension (1 + 3*N + 2*N*lg N + 3*N**2)
- *> ( lg( N ) = smallest integer k
- *> such that 2^k >= N )
- *> \endverbatim
- *>
- *> \param[out] QSTORE
- *> \verbatim
- *> QSTORE is COMPLEX array, dimension (LDQS, N)
- *> Used to store parts of
- *> the eigenvector matrix when the updating matrix multiplies
- *> take place.
- *> \endverbatim
- *>
- *> \param[in] LDQS
- *> \verbatim
- *> LDQS is INTEGER
- *> The leading dimension of the array QSTORE.
- *> LDQS >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: The algorithm failed to compute an eigenvalue while
- *> working on the submatrix lying in rows and columns
- *> INFO/(N+1) through mod(INFO,N+1).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDQ, LDQS, N, QSIZ
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL D( * ), E( * ), RWORK( * )
- COMPLEX Q( LDQ, * ), QSTORE( LDQS, * )
- * ..
- *
- * =====================================================================
- *
- * Warning: N could be as big as QSIZ!
- *
- * .. Parameters ..
- REAL TWO
- PARAMETER ( TWO = 2.E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
- $ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
- $ J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
- $ SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
- REAL TEMP
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CLACRM, CLAED7, SCOPY, SSTEQR, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, LOG, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- * IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
- * INFO = -1
- * ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
- * $ THEN
- IF( QSIZ.LT.MAX( 0, N ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLAED0', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- SMLSIZ = ILAENV( 9, 'CLAED0', ' ', 0, 0, 0, 0 )
- *
- * Determine the size and placement of the submatrices, and save in
- * the leading elements of IWORK.
- *
- IWORK( 1 ) = N
- SUBPBS = 1
- TLVLS = 0
- 10 CONTINUE
- IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
- DO 20 J = SUBPBS, 1, -1
- IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
- IWORK( 2*J-1 ) = IWORK( J ) / 2
- 20 CONTINUE
- TLVLS = TLVLS + 1
- SUBPBS = 2*SUBPBS
- GO TO 10
- END IF
- DO 30 J = 2, SUBPBS
- IWORK( J ) = IWORK( J ) + IWORK( J-1 )
- 30 CONTINUE
- *
- * Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
- * using rank-1 modifications (cuts).
- *
- SPM1 = SUBPBS - 1
- DO 40 I = 1, SPM1
- SUBMAT = IWORK( I ) + 1
- SMM1 = SUBMAT - 1
- D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
- D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
- 40 CONTINUE
- *
- INDXQ = 4*N + 3
- *
- * Set up workspaces for eigenvalues only/accumulate new vectors
- * routine
- *
- TEMP = LOG( REAL( N ) ) / LOG( TWO )
- LGN = INT( TEMP )
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- IPRMPT = INDXQ + N + 1
- IPERM = IPRMPT + N*LGN
- IQPTR = IPERM + N*LGN
- IGIVPT = IQPTR + N + 2
- IGIVCL = IGIVPT + N*LGN
- *
- IGIVNM = 1
- IQ = IGIVNM + 2*N*LGN
- IWREM = IQ + N**2 + 1
- * Initialize pointers
- DO 50 I = 0, SUBPBS
- IWORK( IPRMPT+I ) = 1
- IWORK( IGIVPT+I ) = 1
- 50 CONTINUE
- IWORK( IQPTR ) = 1
- *
- * Solve each submatrix eigenproblem at the bottom of the divide and
- * conquer tree.
- *
- CURR = 0
- DO 70 I = 0, SPM1
- IF( I.EQ.0 ) THEN
- SUBMAT = 1
- MATSIZ = IWORK( 1 )
- ELSE
- SUBMAT = IWORK( I ) + 1
- MATSIZ = IWORK( I+1 ) - IWORK( I )
- END IF
- LL = IQ - 1 + IWORK( IQPTR+CURR )
- CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
- $ RWORK( LL ), MATSIZ, RWORK, INFO )
- CALL CLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
- $ MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
- $ RWORK( IWREM ) )
- IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
- CURR = CURR + 1
- IF( INFO.GT.0 ) THEN
- INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
- RETURN
- END IF
- K = 1
- DO 60 J = SUBMAT, IWORK( I+1 )
- IWORK( INDXQ+J ) = K
- K = K + 1
- 60 CONTINUE
- 70 CONTINUE
- *
- * Successively merge eigensystems of adjacent submatrices
- * into eigensystem for the corresponding larger matrix.
- *
- * while ( SUBPBS > 1 )
- *
- CURLVL = 1
- 80 CONTINUE
- IF( SUBPBS.GT.1 ) THEN
- SPM2 = SUBPBS - 2
- DO 90 I = 0, SPM2, 2
- IF( I.EQ.0 ) THEN
- SUBMAT = 1
- MATSIZ = IWORK( 2 )
- MSD2 = IWORK( 1 )
- CURPRB = 0
- ELSE
- SUBMAT = IWORK( I ) + 1
- MATSIZ = IWORK( I+2 ) - IWORK( I )
- MSD2 = MATSIZ / 2
- CURPRB = CURPRB + 1
- END IF
- *
- * Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
- * into an eigensystem of size MATSIZ. CLAED7 handles the case
- * when the eigenvectors of a full or band Hermitian matrix (which
- * was reduced to tridiagonal form) are desired.
- *
- * I am free to use Q as a valuable working space until Loop 150.
- *
- CALL CLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
- $ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
- $ E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
- $ RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
- $ IWORK( IPERM ), IWORK( IGIVPT ),
- $ IWORK( IGIVCL ), RWORK( IGIVNM ),
- $ Q( 1, SUBMAT ), RWORK( IWREM ),
- $ IWORK( SUBPBS+1 ), INFO )
- IF( INFO.GT.0 ) THEN
- INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
- RETURN
- END IF
- IWORK( I / 2+1 ) = IWORK( I+2 )
- 90 CONTINUE
- SUBPBS = SUBPBS / 2
- CURLVL = CURLVL + 1
- GO TO 80
- END IF
- *
- * end while
- *
- * Re-merge the eigenvalues/vectors which were deflated at the final
- * merge step.
- *
- DO 100 I = 1, N
- J = IWORK( INDXQ+I )
- RWORK( I ) = D( J )
- CALL CCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
- 100 CONTINUE
- CALL SCOPY( N, RWORK, 1, D, 1 )
- *
- RETURN
- *
- * End of CLAED0
- *
- END
|