|
- *> \brief \b CHETRS_3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHETRS_3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrs_3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrs_3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrs_3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHETRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> CHETRS_3 solves a system of linear equations A * X = B with a complex
- *> Hermitian matrix A using the factorization computed
- *> by CHETRF_RK or CHETRF_BK:
- *>
- *> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
- *>
- *> where U (or L) is unit upper (or lower) triangular matrix,
- *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
- *> matrix, P**T is the transpose of P, and D is Hermitian and block
- *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> This algorithm is using Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are
- *> stored as an upper or lower triangular matrix:
- *> = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T);
- *> = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> Diagonal of the block diagonal matrix D and factors U or L
- *> as computed by CHETRF_RK and CHETRF_BK:
- *> a) ONLY diagonal elements of the Hermitian block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> should be provided on entry in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is COMPLEX array, dimension (N)
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the Hermitian block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *>
- *> NOTE: For 1-by-1 diagonal block D(k), where
- *> 1 <= k <= N, the element E(k) is not referenced in both
- *> UPLO = 'U' or UPLO = 'L' cases.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by CHETRF_RK or CHETRF_BK.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexHEcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> June 2017, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE CHETRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * ), B( LDB, * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0,0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, J, K, KP
- REAL S
- COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CSSCAL, CSWAP, CTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CONJG, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHETRS_3', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Begin Upper
- *
- * Solve A*X = B, where A = U*D*U**H.
- *
- * P**T * B
- *
- * Interchange rows K and IPIV(K) of matrix B in the same order
- * that the formation order of IPIV(I) vector for Upper case.
- *
- * (We can do the simple loop over IPIV with decrement -1,
- * since the ABS value of IPIV(I) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- DO K = N, 1, -1
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- END DO
- *
- * Compute (U \P**T * B) -> B [ (U \P**T * B) ]
- *
- CALL CTRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
- *
- * Compute D \ B -> B [ D \ (U \P**T * B) ]
- *
- I = N
- DO WHILE ( I.GE.1 )
- IF( IPIV( I ).GT.0 ) THEN
- S = REAL( ONE ) / REAL( A( I, I ) )
- CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
- ELSE IF ( I.GT.1 ) THEN
- AKM1K = E( I )
- AKM1 = A( I-1, I-1 ) / AKM1K
- AK = A( I, I ) / CONJG( AKM1K )
- DENOM = AKM1*AK - ONE
- DO J = 1, NRHS
- BKM1 = B( I-1, J ) / AKM1K
- BK = B( I, J ) / CONJG( AKM1K )
- B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
- B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
- END DO
- I = I - 1
- END IF
- I = I - 1
- END DO
- *
- * Compute (U**H \ B) -> B [ U**H \ (D \ (U \P**T * B) ) ]
- *
- CALL CTRSM( 'L', 'U', 'C', 'U', N, NRHS, ONE, A, LDA, B, LDB )
- *
- * P * B [ P * (U**H \ (D \ (U \P**T * B) )) ]
- *
- * Interchange rows K and IPIV(K) of matrix B in reverse order
- * from the formation order of IPIV(I) vector for Upper case.
- *
- * (We can do the simple loop over IPIV with increment 1,
- * since the ABS value of IPIV(I) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- DO K = 1, N, 1
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- END DO
- *
- ELSE
- *
- * Begin Lower
- *
- * Solve A*X = B, where A = L*D*L**H.
- *
- * P**T * B
- * Interchange rows K and IPIV(K) of matrix B in the same order
- * that the formation order of IPIV(I) vector for Lower case.
- *
- * (We can do the simple loop over IPIV with increment 1,
- * since the ABS value of IPIV(I) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- DO K = 1, N, 1
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- END DO
- *
- * Compute (L \P**T * B) -> B [ (L \P**T * B) ]
- *
- CALL CTRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
- *
- * Compute D \ B -> B [ D \ (L \P**T * B) ]
- *
- I = 1
- DO WHILE ( I.LE.N )
- IF( IPIV( I ).GT.0 ) THEN
- S = REAL( ONE ) / REAL( A( I, I ) )
- CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
- ELSE IF( I.LT.N ) THEN
- AKM1K = E( I )
- AKM1 = A( I, I ) / CONJG( AKM1K )
- AK = A( I+1, I+1 ) / AKM1K
- DENOM = AKM1*AK - ONE
- DO J = 1, NRHS
- BKM1 = B( I, J ) / CONJG( AKM1K )
- BK = B( I+1, J ) / AKM1K
- B( I, J ) = ( AK*BKM1-BK ) / DENOM
- B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
- END DO
- I = I + 1
- END IF
- I = I + 1
- END DO
- *
- * Compute (L**H \ B) -> B [ L**H \ (D \ (L \P**T * B) ) ]
- *
- CALL CTRSM('L', 'L', 'C', 'U', N, NRHS, ONE, A, LDA, B, LDB )
- *
- * P * B [ P * (L**H \ (D \ (L \P**T * B) )) ]
- *
- * Interchange rows K and IPIV(K) of matrix B in reverse order
- * from the formation order of IPIV(I) vector for Lower case.
- *
- * (We can do the simple loop over IPIV with decrement -1,
- * since the ABS value of IPIV(I) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- DO K = N, 1, -1
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- END DO
- *
- * END Lower
- *
- END IF
- *
- RETURN
- *
- * End of CHETRS_3
- *
- END
|