|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief <b> CGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGTSVX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtsvx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtsvx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtsvx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, */
- /* DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, */
- /* WORK, RWORK, INFO ) */
-
- /* CHARACTER FACT, TRANS */
- /* INTEGER INFO, LDB, LDX, N, NRHS */
- /* REAL RCOND */
- /* INTEGER IPIV( * ) */
- /* REAL BERR( * ), FERR( * ), RWORK( * ) */
- /* COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ), */
- /* $ DLF( * ), DU( * ), DU2( * ), DUF( * ), */
- /* $ WORK( * ), X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGTSVX uses the LU factorization to compute the solution to a complex */
- /* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
- /* > where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
- /* > matrices. */
- /* > */
- /* > Error bounds on the solution and a condition estimate are also */
- /* > provided. */
- /* > \endverbatim */
-
- /* > \par Description: */
- /* ================= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The following steps are performed: */
- /* > */
- /* > 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
- /* > as A = L * U, where L is a product of permutation and unit lower */
- /* > bidiagonal matrices and U is upper triangular with nonzeros in */
- /* > only the main diagonal and first two superdiagonals. */
- /* > */
- /* > 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
- /* > returns with INFO = i. Otherwise, the factored form of A is used */
- /* > to estimate the condition number of the matrix A. If the */
- /* > reciprocal of the condition number is less than machine precision, */
- /* > INFO = N+1 is returned as a warning, but the routine still goes on */
- /* > to solve for X and compute error bounds as described below. */
- /* > */
- /* > 3. The system of equations is solved for X using the factored form */
- /* > of A. */
- /* > */
- /* > 4. Iterative refinement is applied to improve the computed solution */
- /* > matrix and calculate error bounds and backward error estimates */
- /* > for it. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] FACT */
- /* > \verbatim */
- /* > FACT is CHARACTER*1 */
- /* > Specifies whether or not the factored form of A has been */
- /* > supplied on entry. */
- /* > = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored form */
- /* > of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not */
- /* > be modified. */
- /* > = 'N': The matrix will be copied to DLF, DF, and DUF */
- /* > and factored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > Specifies the form of the system of equations: */
- /* > = 'N': A * X = B (No transpose) */
- /* > = 'T': A**T * X = B (Transpose) */
- /* > = 'C': A**H * X = B (Conjugate transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrix B. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DL */
- /* > \verbatim */
- /* > DL is COMPLEX array, dimension (N-1) */
- /* > The (n-1) subdiagonal elements of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is COMPLEX array, dimension (N) */
- /* > The n diagonal elements of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DU */
- /* > \verbatim */
- /* > DU is COMPLEX array, dimension (N-1) */
- /* > The (n-1) superdiagonal elements of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DLF */
- /* > \verbatim */
- /* > DLF is COMPLEX array, dimension (N-1) */
- /* > If FACT = 'F', then DLF is an input argument and on entry */
- /* > contains the (n-1) multipliers that define the matrix L from */
- /* > the LU factorization of A as computed by CGTTRF. */
- /* > */
- /* > If FACT = 'N', then DLF is an output argument and on exit */
- /* > contains the (n-1) multipliers that define the matrix L from */
- /* > the LU factorization of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DF */
- /* > \verbatim */
- /* > DF is COMPLEX array, dimension (N) */
- /* > If FACT = 'F', then DF is an input argument and on entry */
- /* > contains the n diagonal elements of the upper triangular */
- /* > matrix U from the LU factorization of A. */
- /* > */
- /* > If FACT = 'N', then DF is an output argument and on exit */
- /* > contains the n diagonal elements of the upper triangular */
- /* > matrix U from the LU factorization of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DUF */
- /* > \verbatim */
- /* > DUF is COMPLEX array, dimension (N-1) */
- /* > If FACT = 'F', then DUF is an input argument and on entry */
- /* > contains the (n-1) elements of the first superdiagonal of U. */
- /* > */
- /* > If FACT = 'N', then DUF is an output argument and on exit */
- /* > contains the (n-1) elements of the first superdiagonal of U. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DU2 */
- /* > \verbatim */
- /* > DU2 is COMPLEX array, dimension (N-2) */
- /* > If FACT = 'F', then DU2 is an input argument and on entry */
- /* > contains the (n-2) elements of the second superdiagonal of */
- /* > U. */
- /* > */
- /* > If FACT = 'N', then DU2 is an output argument and on exit */
- /* > contains the (n-2) elements of the second superdiagonal of */
- /* > U. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > If FACT = 'F', then IPIV is an input argument and on entry */
- /* > contains the pivot indices from the LU factorization of A as */
- /* > computed by CGTTRF. */
- /* > */
- /* > If FACT = 'N', then IPIV is an output argument and on exit */
- /* > contains the pivot indices from the LU factorization of A; */
- /* > row i of the matrix was interchanged with row IPIV(i). */
- /* > IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
- /* > a row interchange was not required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB,NRHS) */
- /* > The N-by-NRHS right hand side matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX array, dimension (LDX,NRHS) */
- /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCOND */
- /* > \verbatim */
- /* > RCOND is REAL */
- /* > The estimate of the reciprocal condition number of the matrix */
- /* > A. If RCOND is less than the machine precision (in */
- /* > particular, if RCOND = 0), the matrix is singular to working */
- /* > precision. This condition is indicated by a return code of */
- /* > INFO > 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] FERR */
- /* > \verbatim */
- /* > FERR is REAL array, dimension (NRHS) */
- /* > The estimated forward error bound for each solution vector */
- /* > X(j) (the j-th column of the solution matrix X). */
- /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* > is an estimated upper bound for the magnitude of the largest */
- /* > element in (X(j) - XTRUE) divided by the magnitude of the */
- /* > largest element in X(j). The estimate is as reliable as */
- /* > the estimate for RCOND, and is almost always a slight */
- /* > overestimate of the true error. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BERR */
- /* > \verbatim */
- /* > BERR is REAL array, dimension (NRHS) */
- /* > The componentwise relative backward error of each solution */
- /* > vector X(j) (i.e., the smallest relative change in */
- /* > any element of A or B that makes X(j) an exact solution). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (2*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, and i is */
- /* > <= N: U(i,i) is exactly zero. The factorization */
- /* > has not been completed unless i = N, but the */
- /* > factor U is exactly singular, so the solution */
- /* > and error bounds could not be computed. */
- /* > RCOND = 0 is returned. */
- /* > = N+1: U is nonsingular, but RCOND is less than machine */
- /* > precision, meaning that the matrix is singular */
- /* > to working precision. Nevertheless, the */
- /* > solution and error bounds are computed because */
- /* > there are a number of situations where the */
- /* > computed solution can be more accurate than the */
- /* > value of RCOND would suggest. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGTsolve */
-
- /* ===================================================================== */
- /* Subroutine */ void cgtsvx_(char *fact, char *trans, integer *n, integer *
- nrhs, complex *dl, complex *d__, complex *du, complex *dlf, complex *
- df, complex *duf, complex *du2, integer *ipiv, complex *b, integer *
- ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr,
- complex *work, real *rwork, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1;
-
- /* Local variables */
- char norm[1];
- extern logical lsame_(char *, char *);
- real anorm;
- extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
- complex *, integer *);
- extern real slamch_(char *), clangt_(char *, integer *, complex *,
- complex *, complex *);
- logical nofact;
- extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), cgtcon_(char *,
- integer *, complex *, complex *, complex *, complex *, integer *,
- real *, real *, complex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void cgtrfs_(char *, integer *, integer *, complex
- *, complex *, complex *, complex *, complex *, complex *, complex
- *, integer *, complex *, integer *, complex *, integer *, real *,
- real *, complex *, real *, integer *), cgttrf_(integer *,
- complex *, complex *, complex *, complex *, integer *, integer *);
- logical notran;
- extern /* Subroutine */ void cgttrs_(char *, integer *, integer *, complex
- *, complex *, complex *, complex *, integer *, complex *, integer
- *, integer *);
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- --dl;
- --d__;
- --du;
- --dlf;
- --df;
- --duf;
- --du2;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --rwork;
-
- /* Function Body */
- *info = 0;
- nofact = lsame_(fact, "N");
- notran = lsame_(trans, "N");
- if (! nofact && ! lsame_(fact, "F")) {
- *info = -1;
- } else if (! notran && ! lsame_(trans, "T") && !
- lsame_(trans, "C")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -14;
- } else if (*ldx < f2cmax(1,*n)) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGTSVX", &i__1, (ftnlen)6);
- return;
- }
-
- if (nofact) {
-
- /* Compute the LU factorization of A. */
-
- ccopy_(n, &d__[1], &c__1, &df[1], &c__1);
- if (*n > 1) {
- i__1 = *n - 1;
- ccopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
- i__1 = *n - 1;
- ccopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
- }
- cgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
-
- /* Return if INFO is non-zero. */
-
- if (*info > 0) {
- *rcond = 0.f;
- return;
- }
- }
-
- /* Compute the norm of the matrix A. */
-
- if (notran) {
- *(unsigned char *)norm = '1';
- } else {
- *(unsigned char *)norm = 'I';
- }
- anorm = clangt_(norm, n, &dl[1], &d__[1], &du[1]);
-
- /* Compute the reciprocal of the condition number of A. */
-
- cgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm,
- rcond, &work[1], info);
-
- /* Compute the solution vectors X. */
-
- clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- cgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
- x_offset], ldx, info);
-
- /* Use iterative refinement to improve the computed solutions and */
- /* compute error bounds and backward error estimates for them. */
-
- cgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
- &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
- , &berr[1], &work[1], &rwork[1], info);
-
- /* Set INFO = N+1 if the matrix is singular to working precision. */
-
- if (*rcond < slamch_("Epsilon")) {
- *info = *n + 1;
- }
-
- return;
-
- /* End of CGTSVX */
-
- } /* cgtsvx_ */
|