|
- *> \brief \b CGTCON
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGTCON + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtcon.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtcon.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtcon.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
- * WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER INFO, N
- * REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGTCON estimates the reciprocal of the condition number of a complex
- *> tridiagonal matrix A using the LU factorization as computed by
- *> CGTTRF.
- *>
- *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
- *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies whether the 1-norm condition number or the
- *> infinity-norm condition number is required:
- *> = '1' or 'O': 1-norm;
- *> = 'I': Infinity-norm.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is COMPLEX array, dimension (N-1)
- *> The (n-1) multipliers that define the matrix L from the
- *> LU factorization of A as computed by CGTTRF.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is COMPLEX array, dimension (N)
- *> The n diagonal elements of the upper triangular matrix U from
- *> the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is COMPLEX array, dimension (N-1)
- *> The (n-1) elements of the first superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in] DU2
- *> \verbatim
- *> DU2 is COMPLEX array, dimension (N-2)
- *> The (n-2) elements of the second superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices; for 1 <= i <= n, row i of the matrix was
- *> interchanged with row IPIV(i). IPIV(i) will always be either
- *> i or i+1; IPIV(i) = i indicates a row interchange was not
- *> required.
- *> \endverbatim
- *>
- *> \param[in] ANORM
- *> \verbatim
- *> ANORM is REAL
- *> If NORM = '1' or 'O', the 1-norm of the original matrix A.
- *> If NORM = 'I', the infinity-norm of the original matrix A.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
- *> estimate of the 1-norm of inv(A) computed in this routine.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGTcomputational
- *
- * =====================================================================
- SUBROUTINE CGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
- $ WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER INFO, N
- REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ONENRM
- INTEGER I, KASE, KASE1
- REAL AINVNM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CGTTRS, CLACN2, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments.
- *
- INFO = 0
- ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
- IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( ANORM.LT.ZERO ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGTCON', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- RCOND = ZERO
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- ELSE IF( ANORM.EQ.ZERO ) THEN
- RETURN
- END IF
- *
- * Check that D(1:N) is non-zero.
- *
- DO 10 I = 1, N
- IF( D( I ).EQ.CMPLX( ZERO ) )
- $ RETURN
- 10 CONTINUE
- *
- AINVNM = ZERO
- IF( ONENRM ) THEN
- KASE1 = 1
- ELSE
- KASE1 = 2
- END IF
- KASE = 0
- 20 CONTINUE
- CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.KASE1 ) THEN
- *
- * Multiply by inv(U)*inv(L).
- *
- CALL CGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
- $ WORK, N, INFO )
- ELSE
- *
- * Multiply by inv(L**H)*inv(U**H).
- *
- CALL CGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2,
- $ IPIV, WORK, N, INFO )
- END IF
- GO TO 20
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / AINVNM ) / ANORM
- *
- RETURN
- *
- * End of CGTCON
- *
- END
|