|
- *> \brief <b> CGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGGEV3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggev3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggev3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggev3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
- * $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVL, JOBVR
- * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
- * $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices
- *> (A,B), the generalized eigenvalues, and optionally, the left and/or
- *> right generalized eigenvectors.
- *>
- *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
- *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
- *> singular. It is usually represented as the pair (alpha,beta), as
- *> there is a reasonable interpretation for beta=0, and even for both
- *> being zero.
- *>
- *> The right generalized eigenvector v(j) corresponding to the
- *> generalized eigenvalue lambda(j) of (A,B) satisfies
- *>
- *> A * v(j) = lambda(j) * B * v(j).
- *>
- *> The left generalized eigenvector u(j) corresponding to the
- *> generalized eigenvalues lambda(j) of (A,B) satisfies
- *>
- *> u(j)**H * A = lambda(j) * u(j)**H * B
- *>
- *> where u(j)**H is the conjugate-transpose of u(j).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVL
- *> \verbatim
- *> JOBVL is CHARACTER*1
- *> = 'N': do not compute the left generalized eigenvectors;
- *> = 'V': compute the left generalized eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] JOBVR
- *> \verbatim
- *> JOBVR is CHARACTER*1
- *> = 'N': do not compute the right generalized eigenvectors;
- *> = 'V': compute the right generalized eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, VL, and VR. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, the matrix A in the pair (A,B).
- *> On exit, A has been overwritten.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB, N)
- *> On entry, the matrix B in the pair (A,B).
- *> On exit, B has been overwritten.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is COMPLEX array, dimension (N)
- *> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
- *> generalized eigenvalues.
- *>
- *> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
- *> underflow, and BETA(j) may even be zero. Thus, the user
- *> should avoid naively computing the ratio alpha/beta.
- *> However, ALPHA will be always less than and usually
- *> comparable with norm(A) in magnitude, and BETA always less
- *> than and usually comparable with norm(B).
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is COMPLEX array, dimension (LDVL,N)
- *> If JOBVL = 'V', the left generalized eigenvectors u(j) are
- *> stored one after another in the columns of VL, in the same
- *> order as their eigenvalues.
- *> Each eigenvector is scaled so the largest component has
- *> abs(real part) + abs(imag. part) = 1.
- *> Not referenced if JOBVL = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the matrix VL. LDVL >= 1, and
- *> if JOBVL = 'V', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is COMPLEX array, dimension (LDVR,N)
- *> If JOBVR = 'V', the right generalized eigenvectors v(j) are
- *> stored one after another in the columns of VR, in the same
- *> order as their eigenvalues.
- *> Each eigenvector is scaled so the largest component has
- *> abs(real part) + abs(imag. part) = 1.
- *> Not referenced if JOBVR = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the matrix VR. LDVR >= 1, and
- *> if JOBVR = 'V', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= MAX(1,2*N).
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (8*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> =1,...,N:
- *> The QZ iteration failed. No eigenvectors have been
- *> calculated, but ALPHA(j) and BETA(j) should be
- *> correct for j=INFO+1,...,N.
- *> > N: =N+1: other then QZ iteration failed in CHGEQZ,
- *> =N+2: error return from CTGEVC.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup ggev3
- *
- * =====================================================================
- SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
- $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
- $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
- $ CONE = ( 1.0E0, 0.0E0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
- CHARACTER CHTEMP
- INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
- $ LWKOPT, LWKMIN
- REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SMLNUM, TEMP
- COMPLEX X
- * ..
- * .. Local Arrays ..
- LOGICAL LDUMMA( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHD3, CLAQZ0, CLACPY,
- $ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANGE, SLAMCH, SROUNDUP_LWORK
- EXTERNAL LSAME, CLANGE, SLAMCH, SROUNDUP_LWORK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, MAX, REAL, SQRT
- * ..
- * .. Statement Functions ..
- REAL ABS1
- * ..
- * .. Statement Function definitions ..
- ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
- * ..
- * .. Executable Statements ..
- *
- * Decode the input arguments
- *
- IF( LSAME( JOBVL, 'N' ) ) THEN
- IJOBVL = 1
- ILVL = .FALSE.
- ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
- IJOBVL = 2
- ILVL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVL = .FALSE.
- END IF
- *
- IF( LSAME( JOBVR, 'N' ) ) THEN
- IJOBVR = 1
- ILVR = .FALSE.
- ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
- IJOBVR = 2
- ILVR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVR = .FALSE.
- END IF
- ILV = ILVL .OR. ILVR
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- LWKMIN = MAX( 1, 2*N )
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
- INFO = -11
- ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
- INFO = -13
- ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -15
- END IF
- *
- * Compute workspace
- *
- IF( INFO.EQ.0 ) THEN
- CALL CGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
- LWKOPT = MAX( LWKMIN, N+INT( WORK( 1 ) ) )
- CALL CUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
- $ -1, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- IF( ILVL ) THEN
- CALL CUNGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- END IF
- IF( ILV ) THEN
- CALL CGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, WORK, -1, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- CALL CLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
- $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
- $ RWORK, 0, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- ELSE
- CALL CGGHD3( 'N', 'N', N, 1, N, A, LDA, B, LDB, VL, LDVL,
- $ VR, LDVR, WORK, -1, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- CALL CLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
- $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
- $ RWORK, 0, IERR )
- LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
- END IF
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = 1
- ELSE
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGGEV3 ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
- SMLNUM = SLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
- IF( ILASCL )
- $ CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
- *
- * Scale B if max element outside range [SMLNUM,BIGNUM]
- *
- BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
- IF( ILBSCL )
- $ CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
- *
- * Permute the matrices A, B to isolate eigenvalues if possible
- *
- ILEFT = 1
- IRIGHT = N + 1
- IRWRK = IRIGHT + N
- CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
- *
- * Reduce B to triangular form (QR decomposition of B)
- *
- IROWS = IHI + 1 - ILO
- IF( ILV ) THEN
- ICOLS = N + 1 - ILO
- ELSE
- ICOLS = IROWS
- END IF
- ITAU = 1
- IWRK = ITAU + IROWS
- CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
- *
- * Apply the orthogonal transformation to matrix A
- *
- CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
- $ LWORK+1-IWRK, IERR )
- *
- * Initialize VL
- *
- IF( ILVL ) THEN
- CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
- IF( IROWS.GT.1 ) THEN
- CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VL( ILO+1, ILO ), LDVL )
- END IF
- CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
- $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
- END IF
- *
- * Initialize VR
- *
- IF( ILVR )
- $ CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
- *
- * Reduce to generalized Hessenberg form
- *
- IF( ILV ) THEN
- *
- * Eigenvectors requested -- work on whole matrix.
- *
- CALL CGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK,
- $ IERR )
- ELSE
- CALL CGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
- $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
- END IF
- *
- * Perform QZ algorithm (Compute eigenvalues, and optionally, the
- * Schur form and Schur vectors)
- *
- IWRK = ITAU
- IF( ILV ) THEN
- CHTEMP = 'S'
- ELSE
- CHTEMP = 'E'
- END IF
- CALL CLAQZ0( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
- $ LWORK+1-IWRK, RWORK( IRWRK ), 0, IERR )
- IF( IERR.NE.0 ) THEN
- IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
- INFO = IERR
- ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
- INFO = IERR - N
- ELSE
- INFO = N + 1
- END IF
- GO TO 70
- END IF
- *
- * Compute Eigenvectors
- *
- IF( ILV ) THEN
- IF( ILVL ) THEN
- IF( ILVR ) THEN
- CHTEMP = 'B'
- ELSE
- CHTEMP = 'L'
- END IF
- ELSE
- CHTEMP = 'R'
- END IF
- *
- CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
- $ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
- $ IERR )
- IF( IERR.NE.0 ) THEN
- INFO = N + 2
- GO TO 70
- END IF
- *
- * Undo balancing on VL and VR and normalization
- *
- IF( ILVL ) THEN
- CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), N, VL, LDVL, IERR )
- DO 30 JC = 1, N
- TEMP = ZERO
- DO 10 JR = 1, N
- TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
- 10 CONTINUE
- IF( TEMP.LT.SMLNUM )
- $ GO TO 30
- TEMP = ONE / TEMP
- DO 20 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- 20 CONTINUE
- 30 CONTINUE
- END IF
- IF( ILVR ) THEN
- CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), N, VR, LDVR, IERR )
- DO 60 JC = 1, N
- TEMP = ZERO
- DO 40 JR = 1, N
- TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
- 40 CONTINUE
- IF( TEMP.LT.SMLNUM )
- $ GO TO 60
- TEMP = ONE / TEMP
- DO 50 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- 50 CONTINUE
- 60 CONTINUE
- END IF
- END IF
- *
- * Undo scaling if necessary
- *
- 70 CONTINUE
- *
- IF( ILASCL )
- $ CALL CLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
- *
- IF( ILBSCL )
- $ CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
- *
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- RETURN
- *
- * End of CGGEV3
- *
- END
|