|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c_n1 = -1;
-
- /* > \brief <b> CGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
- for GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGGESX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggesx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggesx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggesx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, */
- /* B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, */
- /* LDVSR, RCONDE, RCONDV, WORK, LWORK, RWORK, */
- /* IWORK, LIWORK, BWORK, INFO ) */
-
- /* CHARACTER JOBVSL, JOBVSR, SENSE, SORT */
- /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N, */
- /* $ SDIM */
- /* LOGICAL BWORK( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL RCONDE( 2 ), RCONDV( 2 ), RWORK( * ) */
- /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
- /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
- /* $ WORK( * ) */
- /* LOGICAL SELCTG */
- /* EXTERNAL SELCTG */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGGESX computes for a pair of N-by-N complex nonsymmetric matrices */
- /* > (A,B), the generalized eigenvalues, the complex Schur form (S,T), */
- /* > and, optionally, the left and/or right matrices of Schur vectors (VSL */
- /* > and VSR). This gives the generalized Schur factorization */
- /* > */
- /* > (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H ) */
- /* > */
- /* > where (VSR)**H is the conjugate-transpose of VSR. */
- /* > */
- /* > Optionally, it also orders the eigenvalues so that a selected cluster */
- /* > of eigenvalues appears in the leading diagonal blocks of the upper */
- /* > triangular matrix S and the upper triangular matrix T; computes */
- /* > a reciprocal condition number for the average of the selected */
- /* > eigenvalues (RCONDE); and computes a reciprocal condition number for */
- /* > the right and left deflating subspaces corresponding to the selected */
- /* > eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
- /* > an orthonormal basis for the corresponding left and right eigenspaces */
- /* > (deflating subspaces). */
- /* > */
- /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
- /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
- /* > usually represented as the pair (alpha,beta), as there is a */
- /* > reasonable interpretation for beta=0 or for both being zero. */
- /* > */
- /* > A pair of matrices (S,T) is in generalized complex Schur form if T is */
- /* > upper triangular with non-negative diagonal and S is upper */
- /* > triangular. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVSL */
- /* > \verbatim */
- /* > JOBVSL is CHARACTER*1 */
- /* > = 'N': do not compute the left Schur vectors; */
- /* > = 'V': compute the left Schur vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVSR */
- /* > \verbatim */
- /* > JOBVSR is CHARACTER*1 */
- /* > = 'N': do not compute the right Schur vectors; */
- /* > = 'V': compute the right Schur vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SORT */
- /* > \verbatim */
- /* > SORT is CHARACTER*1 */
- /* > Specifies whether or not to order the eigenvalues on the */
- /* > diagonal of the generalized Schur form. */
- /* > = 'N': Eigenvalues are not ordered; */
- /* > = 'S': Eigenvalues are ordered (see SELCTG). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELCTG */
- /* > \verbatim */
- /* > SELCTG is a LOGICAL FUNCTION of two COMPLEX arguments */
- /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
- /* > If SORT = 'N', SELCTG is not referenced. */
- /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
- /* > to the top left of the Schur form. */
- /* > Note that a selected complex eigenvalue may no longer satisfy */
- /* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */
- /* > ordering may change the value of complex eigenvalues */
- /* > (especially if the eigenvalue is ill-conditioned), in this */
- /* > case INFO is set to N+3 see INFO below). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SENSE */
- /* > \verbatim */
- /* > SENSE is CHARACTER*1 */
- /* > Determines which reciprocal condition numbers are computed. */
- /* > = 'N': None are computed; */
- /* > = 'E': Computed for average of selected eigenvalues only; */
- /* > = 'V': Computed for selected deflating subspaces only; */
- /* > = 'B': Computed for both. */
- /* > If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > On entry, the first of the pair of matrices. */
- /* > On exit, A has been overwritten by its generalized Schur */
- /* > form S. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB, N) */
- /* > On entry, the second of the pair of matrices. */
- /* > On exit, B has been overwritten by its generalized Schur */
- /* > form T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SDIM */
- /* > \verbatim */
- /* > SDIM is INTEGER */
- /* > If SORT = 'N', SDIM = 0. */
- /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
- /* > for which SELCTG is true. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHA */
- /* > \verbatim */
- /* > ALPHA is COMPLEX array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is COMPLEX array, dimension (N) */
- /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
- /* > generalized eigenvalues. ALPHA(j) and BETA(j),j=1,...,N are */
- /* > the diagonals of the complex Schur form (S,T). BETA(j) will */
- /* > be non-negative real. */
- /* > */
- /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
- /* > underflow, and BETA(j) may even be zero. Thus, the user */
- /* > should avoid naively computing the ratio alpha/beta. */
- /* > However, ALPHA will be always less than and usually */
- /* > comparable with norm(A) in magnitude, and BETA always less */
- /* > than and usually comparable with norm(B). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSL */
- /* > \verbatim */
- /* > VSL is COMPLEX array, dimension (LDVSL,N) */
- /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
- /* > Not referenced if JOBVSL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSL */
- /* > \verbatim */
- /* > LDVSL is INTEGER */
- /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
- /* > if JOBVSL = 'V', LDVSL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSR */
- /* > \verbatim */
- /* > VSR is COMPLEX array, dimension (LDVSR,N) */
- /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
- /* > Not referenced if JOBVSR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSR */
- /* > \verbatim */
- /* > LDVSR is INTEGER */
- /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
- /* > if JOBVSR = 'V', LDVSR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDE */
- /* > \verbatim */
- /* > RCONDE is REAL array, dimension ( 2 ) */
- /* > If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
- /* > reciprocal condition numbers for the average of the selected */
- /* > eigenvalues. */
- /* > Not referenced if SENSE = 'N' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDV */
- /* > \verbatim */
- /* > RCONDV is REAL array, dimension ( 2 ) */
- /* > If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
- /* > reciprocal condition number for the selected deflating */
- /* > subspaces. */
- /* > Not referenced if SENSE = 'N' or 'E'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
- /* > LWORK >= MAX(1,2*N,2*SDIM*(N-SDIM)), else */
- /* > LWORK >= MAX(1,2*N). Note that 2*SDIM*(N-SDIM) <= N*N/2. */
- /* > Note also that an error is only returned if */
- /* > LWORK < MAX(1,2*N), but if SENSE = 'E' or 'V' or 'B' this may */
- /* > not be large enough. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the bound on the optimal size of the WORK */
- /* > array and the minimum size of the IWORK array, returns these */
- /* > values as the first entries of the WORK and IWORK arrays, and */
- /* > no error message related to LWORK or LIWORK is issued by */
- /* > XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension ( 8*N ) */
- /* > Real workspace. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
- /* > LIWORK >= N+2. */
- /* > */
- /* > If LIWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the bound on the optimal size of the */
- /* > WORK array and the minimum size of the IWORK array, returns */
- /* > these values as the first entries of the WORK and IWORK */
- /* > arrays, and no error message related to LWORK or LIWORK is */
- /* > issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BWORK */
- /* > \verbatim */
- /* > BWORK is LOGICAL array, dimension (N) */
- /* > Not referenced if SORT = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > = 1,...,N: */
- /* > The QZ iteration failed. (A,B) are not in Schur */
- /* > form, but ALPHA(j) and BETA(j) should be correct for */
- /* > j=INFO+1,...,N. */
- /* > > N: =N+1: other than QZ iteration failed in CHGEQZ */
- /* > =N+2: after reordering, roundoff changed values of */
- /* > some complex eigenvalues so that leading */
- /* > eigenvalues in the Generalized Schur form no */
- /* > longer satisfy SELCTG=.TRUE. This could also */
- /* > be caused due to scaling. */
- /* > =N+3: reordering failed in CTGSEN. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complexGEeigen */
-
- /* ===================================================================== */
- /* Subroutine */ void cggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
- selctg, char *sense, integer *n, complex *a, integer *lda, complex *b,
- integer *ldb, integer *sdim, complex *alpha, complex *beta, complex *
- vsl, integer *ldvsl, complex *vsr, integer *ldvsr, real *rconde, real
- *rcondv, complex *work, integer *lwork, real *rwork, integer *iwork,
- integer *liwork, logical *bwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
- vsr_dim1, vsr_offset, i__1, i__2;
-
- /* Local variables */
- integer ijob;
- real anrm, bnrm;
- integer ierr, itau, iwrk, lwrk, i__;
- extern logical lsame_(char *, char *);
- integer ileft, icols;
- logical cursl, ilvsl, ilvsr;
- integer irwrk, irows;
- extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, complex *, integer *,
- integer *), cggbal_(char *, integer *, complex *,
- integer *, complex *, integer *, integer *, integer *, real *,
- real *, real *, integer *), slabad_(real *, real *);
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- real pl;
- extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, integer *, complex *,
- integer *, complex *, integer *, integer *),
- clascl_(char *, integer *, integer *, real *, real *, integer *,
- integer *, complex *, integer *, integer *);
- real pr;
- logical ilascl, ilbscl;
- extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), clacpy_(
- char *, integer *, integer *, complex *, integer *, complex *,
- integer *), claset_(char *, integer *, integer *, complex
- *, complex *, complex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern real slamch_(char *);
- real bignum;
- extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
- integer *, integer *, complex *, integer *, complex *, integer *,
- complex *, complex *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, integer *),
- ctgsen_(integer *, logical *, logical *, logical *, integer *,
- complex *, integer *, complex *, integer *, complex *, complex *,
- complex *, integer *, complex *, integer *, integer *, real *,
- real *, real *, complex *, integer *, integer *, integer *,
- integer *);
- integer ijobvl, iright, ijobvr;
- logical wantsb;
- integer liwmin;
- logical wantse, lastsl;
- real anrmto, bnrmto;
- extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
- complex *, integer *, complex *, complex *, integer *, integer *);
- integer minwrk, maxwrk;
- logical wantsn;
- real smlnum;
- extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *);
- logical wantst, lquery, wantsv;
- real dif[2];
- integer ihi, ilo;
- real eps;
-
-
- /* -- LAPACK driver routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alpha;
- --beta;
- vsl_dim1 = *ldvsl;
- vsl_offset = 1 + vsl_dim1 * 1;
- vsl -= vsl_offset;
- vsr_dim1 = *ldvsr;
- vsr_offset = 1 + vsr_dim1 * 1;
- vsr -= vsr_offset;
- --rconde;
- --rcondv;
- --work;
- --rwork;
- --iwork;
- --bwork;
-
- /* Function Body */
- if (lsame_(jobvsl, "N")) {
- ijobvl = 1;
- ilvsl = FALSE_;
- } else if (lsame_(jobvsl, "V")) {
- ijobvl = 2;
- ilvsl = TRUE_;
- } else {
- ijobvl = -1;
- ilvsl = FALSE_;
- }
-
- if (lsame_(jobvsr, "N")) {
- ijobvr = 1;
- ilvsr = FALSE_;
- } else if (lsame_(jobvsr, "V")) {
- ijobvr = 2;
- ilvsr = TRUE_;
- } else {
- ijobvr = -1;
- ilvsr = FALSE_;
- }
-
- wantst = lsame_(sort, "S");
- wantsn = lsame_(sense, "N");
- wantse = lsame_(sense, "E");
- wantsv = lsame_(sense, "V");
- wantsb = lsame_(sense, "B");
- lquery = *lwork == -1 || *liwork == -1;
- if (wantsn) {
- ijob = 0;
- } else if (wantse) {
- ijob = 1;
- } else if (wantsv) {
- ijob = 2;
- } else if (wantsb) {
- ijob = 4;
- }
-
- /* Test the input arguments */
-
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (! wantst && ! lsame_(sort, "N")) {
- *info = -3;
- } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
- wantsn) {
- *info = -5;
- } else if (*n < 0) {
- *info = -6;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -8;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -10;
- } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
- *info = -15;
- } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
- *info = -17;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV.) */
-
- if (*info == 0) {
- if (*n > 0) {
- minwrk = *n << 1;
- maxwrk = *n * (ilaenv_(&c__1, "CGEQRF", " ", n, &c__1, n, &c__0, (
- ftnlen)6, (ftnlen)1) + 1);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "CUNMQR", " ", n, &
- c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 1);
- maxwrk = f2cmax(i__1,i__2);
- if (ilvsl) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "CUNGQR", " ", n, &
- c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 1);
- maxwrk = f2cmax(i__1,i__2);
- }
- lwrk = maxwrk;
- if (ijob >= 1) {
- /* Computing MAX */
- i__1 = lwrk, i__2 = *n * *n / 2;
- lwrk = f2cmax(i__1,i__2);
- }
- } else {
- minwrk = 1;
- maxwrk = 1;
- lwrk = 1;
- }
- work[1].r = (real) lwrk, work[1].i = 0.f;
- if (wantsn || *n == 0) {
- liwmin = 1;
- } else {
- liwmin = *n + 2;
- }
- iwork[1] = liwmin;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -21;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -24;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGGESX", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- *sdim = 0;
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
- ilascl = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
- ilbscl = FALSE_;
- if (bnrm > 0.f && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
-
- /* Permute the matrix to make it more nearly triangular */
- /* (Real Workspace: need 6*N) */
-
- ileft = 1;
- iright = *n + 1;
- irwrk = iright + *n;
- cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
- ileft], &rwork[iright], &rwork[irwrk], &ierr);
-
- /* Reduce B to triangular form (QR decomposition of B) */
- /* (Complex Workspace: need N, prefer N*NB) */
-
- irows = ihi + 1 - ilo;
- icols = *n + 1 - ilo;
- itau = 1;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
-
- /* Apply the unitary transformation to matrix A */
- /* (Complex Workspace: need N, prefer N*NB) */
-
- i__1 = *lwork + 1 - iwrk;
- cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
-
- /* Initialize VSL */
- /* (Complex Workspace: need N, prefer N*NB) */
-
- if (ilvsl) {
- claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
- ilo + 1 + ilo * vsl_dim1], ldvsl);
- }
- i__1 = *lwork + 1 - iwrk;
- cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
- work[itau], &work[iwrk], &i__1, &ierr);
- }
-
- /* Initialize VSR */
-
- if (ilvsr) {
- claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
- }
-
- /* Reduce to generalized Hessenberg form */
- /* (Workspace: none needed) */
-
- cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
-
- *sdim = 0;
-
- /* Perform QZ algorithm, computing Schur vectors if desired */
- /* (Complex Workspace: need N) */
- /* (Real Workspace: need N) */
-
- iwrk = itau;
- i__1 = *lwork + 1 - iwrk;
- chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
- vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L40;
- }
-
- /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
- /* condition number(s) */
-
- if (wantst) {
-
- /* Undo scaling on eigenvalues before SELCTGing */
-
- if (ilascl) {
- clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n,
- &ierr);
- }
- if (ilbscl) {
- clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
- &ierr);
- }
-
- /* Select eigenvalues */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]);
- /* L10: */
- }
-
- /* Reorder eigenvalues, transform Generalized Schur vectors, and */
- /* compute reciprocal condition numbers */
- /* (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM)) */
- /* otherwise, need 1 ) */
-
- i__1 = *lwork - iwrk + 1;
- ctgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl,
- &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, dif, &work[iwrk], &
- i__1, &iwork[1], liwork, &ierr);
-
- if (ijob >= 1) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
- maxwrk = f2cmax(i__1,i__2);
- }
- if (ierr == -21) {
-
- /* not enough complex workspace */
-
- *info = -21;
- } else {
- if (ijob == 1 || ijob == 4) {
- rconde[1] = pl;
- rconde[2] = pr;
- }
- if (ijob == 2 || ijob == 4) {
- rcondv[1] = dif[0];
- rcondv[2] = dif[1];
- }
- if (ierr == 1) {
- *info = *n + 3;
- }
- }
-
- }
-
- /* Apply permutation to VSL and VSR */
- /* (Workspace: none needed) */
-
- if (ilvsl) {
- cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
- vsl[vsl_offset], ldvsl, &ierr);
- }
-
- if (ilvsr) {
- cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
- vsr[vsr_offset], ldvsr, &ierr);
- }
-
- /* Undo scaling */
-
- if (ilascl) {
- clascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
- ierr);
- clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
- ierr);
- }
-
- if (ilbscl) {
- clascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
- ierr);
- clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
-
- if (wantst) {
-
- /* Check if reordering is correct */
-
- lastsl = TRUE_;
- *sdim = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- cursl = (*selctg)(&alpha[i__], &beta[i__]);
- if (cursl) {
- ++(*sdim);
- }
- if (cursl && ! lastsl) {
- *info = *n + 2;
- }
- lastsl = cursl;
- /* L30: */
- }
-
- }
-
- L40:
-
- work[1].r = (real) maxwrk, work[1].i = 0.f;
- iwork[1] = liwmin;
-
- return;
-
- /* End of CGGESX */
-
- } /* cggesx_ */
|