|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b36 = 10.f;
- static real c_b72 = .5f;
-
- /* > \brief \b CGGBAL */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGGBAL + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbal.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbal.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbal.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
- /* RSCALE, WORK, INFO ) */
-
- /* CHARACTER JOB */
- /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
- /* REAL LSCALE( * ), RSCALE( * ), WORK( * ) */
- /* COMPLEX A( LDA, * ), B( LDB, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGGBAL balances a pair of general complex matrices (A,B). This */
- /* > involves, first, permuting A and B by similarity transformations to */
- /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
- /* > elements on the diagonal; and second, applying a diagonal similarity */
- /* > transformation to rows and columns ILO to IHI to make the rows */
- /* > and columns as close in norm as possible. Both steps are optional. */
- /* > */
- /* > Balancing may reduce the 1-norm of the matrices, and improve the */
- /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
- /* > generalized eigenvalue problem A*x = lambda*B*x. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > Specifies the operations to be performed on A and B: */
- /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
- /* > and RSCALE(I) = 1.0 for i=1,...,N; */
- /* > = 'P': permute only; */
- /* > = 'S': scale only; */
- /* > = 'B': both permute and scale. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA,N) */
- /* > On entry, the input matrix A. */
- /* > On exit, A is overwritten by the balanced matrix. */
- /* > If JOB = 'N', A is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB,N) */
- /* > On entry, the input matrix B. */
- /* > On exit, B is overwritten by the balanced matrix. */
- /* > If JOB = 'N', B is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > ILO and IHI are set to integers such that on exit */
- /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
- /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
- /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] LSCALE */
- /* > \verbatim */
- /* > LSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the left side of A and B. If P(j) is the index of the */
- /* > row interchanged with row j, and D(j) is the scaling factor */
- /* > applied to row j, then */
- /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
- /* > = D(j) for J = ILO,...,IHI */
- /* > = P(j) for J = IHI+1,...,N. */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RSCALE */
- /* > \verbatim */
- /* > RSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the right side of A and B. If P(j) is the index of the */
- /* > column interchanged with column j, and D(j) is the scaling */
- /* > factor applied to column j, then */
- /* > RSCALE(j) = P(j) for J = 1,...,ILO-1 */
- /* > = D(j) for J = ILO,...,IHI */
- /* > = P(j) for J = IHI+1,...,N. */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (lwork) */
- /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
- /* > at least 1 when JOB = 'N' or 'P'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGBcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
- /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void cggbal_(char *job, integer *n, complex *a, integer *lda,
- complex *b, integer *ldb, integer *ilo, integer *ihi, real *lscale,
- real *rscale, real *work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
- real r__1, r__2, r__3;
-
- /* Local variables */
- integer lcab;
- real beta, coef;
- integer irab, lrab;
- real basl, cmax;
- extern real sdot_(integer *, real *, integer *, real *, integer *);
- real coef2, coef5;
- integer i__, j, k, l, m;
- real gamma, t, alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- real sfmin;
- extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
- complex *, integer *);
- real sfmax;
- integer iflow, kount;
- extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
- real *, integer *);
- integer jc;
- real ta, tb, tc;
- integer ir, it;
- real ew;
- integer nr;
- real pgamma;
- extern integer icamax_(integer *, complex *, integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
- *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer lsfmin, lsfmax, ip1, jp1, lm1;
- real cab, rab, ewc, cor, sum;
- integer nrp2, icab;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --lscale;
- --rscale;
- --work;
-
- /* Function Body */
- *info = 0;
- if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
- && ! lsame_(job, "B")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -4;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGGBAL", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- *ilo = 1;
- *ihi = *n;
- return;
- }
-
- if (*n == 1) {
- *ilo = 1;
- *ihi = *n;
- lscale[1] = 1.f;
- rscale[1] = 1.f;
- return;
- }
-
- if (lsame_(job, "N")) {
- *ilo = 1;
- *ihi = *n;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- lscale[i__] = 1.f;
- rscale[i__] = 1.f;
- /* L10: */
- }
- return;
- }
-
- k = 1;
- l = *n;
- if (lsame_(job, "S")) {
- goto L190;
- }
-
- goto L30;
-
- /* Permute the matrices A and B to isolate the eigenvalues. */
-
- /* Find row with one nonzero in columns 1 through L */
-
- L20:
- l = lm1;
- if (l != 1) {
- goto L30;
- }
-
- rscale[1] = 1.f;
- lscale[1] = 1.f;
- goto L190;
-
- L30:
- lm1 = l - 1;
- for (i__ = l; i__ >= 1; --i__) {
- i__1 = lm1;
- for (j = 1; j <= i__1; ++j) {
- jp1 = j + 1;
- i__2 = i__ + j * a_dim1;
- i__3 = i__ + j * b_dim1;
- if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
- b[i__3].i != 0.f)) {
- goto L50;
- }
- /* L40: */
- }
- j = l;
- goto L70;
-
- L50:
- i__1 = l;
- for (j = jp1; j <= i__1; ++j) {
- i__2 = i__ + j * a_dim1;
- i__3 = i__ + j * b_dim1;
- if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
- b[i__3].i != 0.f)) {
- goto L80;
- }
- /* L60: */
- }
- j = jp1 - 1;
-
- L70:
- m = l;
- iflow = 1;
- goto L160;
- L80:
- ;
- }
- goto L100;
-
- /* Find column with one nonzero in rows K through N */
-
- L90:
- ++k;
-
- L100:
- i__1 = l;
- for (j = k; j <= i__1; ++j) {
- i__2 = lm1;
- for (i__ = k; i__ <= i__2; ++i__) {
- ip1 = i__ + 1;
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * b_dim1;
- if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
- b[i__4].i != 0.f)) {
- goto L120;
- }
- /* L110: */
- }
- i__ = l;
- goto L140;
- L120:
- i__2 = l;
- for (i__ = ip1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * b_dim1;
- if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
- b[i__4].i != 0.f)) {
- goto L150;
- }
- /* L130: */
- }
- i__ = ip1 - 1;
- L140:
- m = k;
- iflow = 2;
- goto L160;
- L150:
- ;
- }
- goto L190;
-
- /* Permute rows M and I */
-
- L160:
- lscale[m] = (real) i__;
- if (i__ == m) {
- goto L170;
- }
- i__1 = *n - k + 1;
- cswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
- i__1 = *n - k + 1;
- cswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
-
- /* Permute columns M and J */
-
- L170:
- rscale[m] = (real) j;
- if (j == m) {
- goto L180;
- }
- cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
- cswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
-
- L180:
- switch (iflow) {
- case 1: goto L20;
- case 2: goto L90;
- }
-
- L190:
- *ilo = k;
- *ihi = l;
-
- if (lsame_(job, "P")) {
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- lscale[i__] = 1.f;
- rscale[i__] = 1.f;
- /* L195: */
- }
- return;
- }
-
- if (*ilo == *ihi) {
- return;
- }
-
- /* Balance the submatrix in rows ILO to IHI. */
-
- nr = *ihi - *ilo + 1;
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- rscale[i__] = 0.f;
- lscale[i__] = 0.f;
-
- work[i__] = 0.f;
- work[i__ + *n] = 0.f;
- work[i__ + (*n << 1)] = 0.f;
- work[i__ + *n * 3] = 0.f;
- work[i__ + (*n << 2)] = 0.f;
- work[i__ + *n * 5] = 0.f;
- /* L200: */
- }
-
- /* Compute right side vector in resulting linear equations */
-
- basl = r_lg10(&c_b36);
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- i__2 = *ihi;
- for (j = *ilo; j <= i__2; ++j) {
- i__3 = i__ + j * a_dim1;
- if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
- ta = 0.f;
- goto L210;
- }
- i__3 = i__ + j * a_dim1;
- r__3 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__ + j *
- a_dim1]), abs(r__2));
- ta = r_lg10(&r__3) / basl;
-
- L210:
- i__3 = i__ + j * b_dim1;
- if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
- tb = 0.f;
- goto L220;
- }
- i__3 = i__ + j * b_dim1;
- r__3 = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__ + j *
- b_dim1]), abs(r__2));
- tb = r_lg10(&r__3) / basl;
-
- L220:
- work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
- work[j + *n * 5] = work[j + *n * 5] - ta - tb;
- /* L230: */
- }
- /* L240: */
- }
-
- coef = 1.f / (real) (nr << 1);
- coef2 = coef * coef;
- coef5 = coef2 * .5f;
- nrp2 = nr + 2;
- beta = 0.f;
- it = 1;
-
- /* Start generalized conjugate gradient iteration */
-
- L250:
-
- gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
- , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
- n * 5], &c__1);
-
- ew = 0.f;
- ewc = 0.f;
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- ew += work[i__ + (*n << 2)];
- ewc += work[i__ + *n * 5];
- /* L260: */
- }
-
- /* Computing 2nd power */
- r__1 = ew;
- /* Computing 2nd power */
- r__2 = ewc;
- /* Computing 2nd power */
- r__3 = ew - ewc;
- gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
- r__3 * r__3);
- if (gamma == 0.f) {
- goto L350;
- }
- if (it != 1) {
- beta = gamma / pgamma;
- }
- t = coef5 * (ewc - ew * 3.f);
- tc = coef5 * (ew - ewc * 3.f);
-
- sscal_(&nr, &beta, &work[*ilo], &c__1);
- sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
-
- saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
- c__1);
- saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
-
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- work[i__] += tc;
- work[i__ + *n] += t;
- /* L270: */
- }
-
- /* Apply matrix to vector */
-
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- kount = 0;
- sum = 0.f;
- i__2 = *ihi;
- for (j = *ilo; j <= i__2; ++j) {
- i__3 = i__ + j * a_dim1;
- if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
- goto L280;
- }
- ++kount;
- sum += work[j];
- L280:
- i__3 = i__ + j * b_dim1;
- if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
- goto L290;
- }
- ++kount;
- sum += work[j];
- L290:
- ;
- }
- work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
- /* L300: */
- }
-
- i__1 = *ihi;
- for (j = *ilo; j <= i__1; ++j) {
- kount = 0;
- sum = 0.f;
- i__2 = *ihi;
- for (i__ = *ilo; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
- goto L310;
- }
- ++kount;
- sum += work[i__ + *n];
- L310:
- i__3 = i__ + j * b_dim1;
- if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
- goto L320;
- }
- ++kount;
- sum += work[i__ + *n];
- L320:
- ;
- }
- work[j + *n * 3] = (real) kount * work[j] + sum;
- /* L330: */
- }
-
- sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
- + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
- alpha = gamma / sum;
-
- /* Determine correction to current iteration */
-
- cmax = 0.f;
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- cor = alpha * work[i__ + *n];
- if (abs(cor) > cmax) {
- cmax = abs(cor);
- }
- lscale[i__] += cor;
- cor = alpha * work[i__];
- if (abs(cor) > cmax) {
- cmax = abs(cor);
- }
- rscale[i__] += cor;
- /* L340: */
- }
- if (cmax < .5f) {
- goto L350;
- }
-
- r__1 = -alpha;
- saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
- , &c__1);
- r__1 = -alpha;
- saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
- c__1);
-
- pgamma = gamma;
- ++it;
- if (it <= nrp2) {
- goto L250;
- }
-
- /* End generalized conjugate gradient iteration */
-
- L350:
- sfmin = slamch_("S");
- sfmax = 1.f / sfmin;
- lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
- lsfmax = (integer) (r_lg10(&sfmax) / basl);
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- i__2 = *n - *ilo + 1;
- irab = icamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
- rab = c_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
- i__2 = *n - *ilo + 1;
- irab = icamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
- /* Computing MAX */
- r__1 = rab, r__2 = c_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
- rab = f2cmax(r__1,r__2);
- r__1 = rab + sfmin;
- lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
- ir = lscale[i__] + r_sign(&c_b72, &lscale[i__]);
- /* Computing MIN */
- i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
- ir = f2cmin(i__2,i__3);
- lscale[i__] = pow_ri(&c_b36, &ir);
- icab = icamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
- cab = c_abs(&a[icab + i__ * a_dim1]);
- icab = icamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
- /* Computing MAX */
- r__1 = cab, r__2 = c_abs(&b[icab + i__ * b_dim1]);
- cab = f2cmax(r__1,r__2);
- r__1 = cab + sfmin;
- lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
- jc = rscale[i__] + r_sign(&c_b72, &rscale[i__]);
- /* Computing MIN */
- i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
- jc = f2cmin(i__2,i__3);
- rscale[i__] = pow_ri(&c_b36, &jc);
- /* L360: */
- }
-
- /* Row scaling of matrices A and B */
-
- i__1 = *ihi;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- i__2 = *n - *ilo + 1;
- csscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
- i__2 = *n - *ilo + 1;
- csscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
- /* L370: */
- }
-
- /* Column scaling of matrices A and B */
-
- i__1 = *ihi;
- for (j = *ilo; j <= i__1; ++j) {
- csscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
- csscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
- /* L380: */
- }
-
- return;
-
- /* End of CGGBAL */
-
- } /* cggbal_ */
|