|
- *> \brief \b CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGELQ2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelq2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelq2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelq2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
- *>
- *> A = ( L 0 ) * Q
- *>
- *> where:
- *>
- *> Q is a n-by-n orthogonal matrix;
- *> L is a lower-triangular m-by-m matrix;
- *> 0 is a m-by-(n-m) zero matrix, if m < n.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the m by n matrix A.
- *> On exit, the elements on and below the diagonal of the array
- *> contain the m by min(m,n) lower trapezoidal matrix L (L is
- *> lower triangular if m <= n); the elements above the diagonal,
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of elementary reflectors (see Further Details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
- *> A(i,i+1:n), and tau in TAU(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, K
- COMPLEX ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGELQ2', -INFO )
- RETURN
- END IF
- *
- K = MIN( M, N )
- *
- DO 10 I = 1, K
- *
- * Generate elementary reflector H(i) to annihilate A(i,i+1:n)
- *
- CALL CLACGV( N-I+1, A( I, I ), LDA )
- ALPHA = A( I, I )
- CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
- $ TAU( I ) )
- IF( I.LT.M ) THEN
- *
- * Apply H(i) to A(i+1:m,i:n) from the right
- *
- A( I, I ) = ONE
- CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
- $ A( I+1, I ), LDA, WORK )
- END IF
- A( I, I ) = ALPHA
- CALL CLACGV( N-I+1, A( I, I ), LDA )
- 10 CONTINUE
- RETURN
- *
- * End of CGELQ2
- *
- END
|