|
- *> \brief \b CGBEQUB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGBEQUB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
- * AMAX, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, KL, KU, LDAB, M, N
- * REAL AMAX, COLCND, ROWCND
- * ..
- * .. Array Arguments ..
- * REAL C( * ), R( * )
- * COMPLEX AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGBEQUB computes row and column scalings intended to equilibrate an
- *> M-by-N matrix A and reduce its condition number. R returns the row
- *> scale factors and C the column scale factors, chosen to try to make
- *> the largest element in each row and column of the matrix B with
- *> elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
- *> the radix.
- *>
- *> R(i) and C(j) are restricted to be a power of the radix between
- *> SMLNUM = smallest safe number and BIGNUM = largest safe number. Use
- *> of these scaling factors is not guaranteed to reduce the condition
- *> number of A but works well in practice.
- *>
- *> This routine differs from CGEEQU by restricting the scaling factors
- *> to a power of the radix. Barring over- and underflow, scaling by
- *> these factors introduces no additional rounding errors. However, the
- *> scaled entries' magnitudes are no longer approximately 1 but lie
- *> between sqrt(radix) and 1/sqrt(radix).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array A. LDAB >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is REAL array, dimension (M)
- *> If INFO = 0 or INFO > M, R contains the row scale factors
- *> for A.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is REAL array, dimension (N)
- *> If INFO = 0, C contains the column scale factors for A.
- *> \endverbatim
- *>
- *> \param[out] ROWCND
- *> \verbatim
- *> ROWCND is REAL
- *> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
- *> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
- *> AMAX is neither too large nor too small, it is not worth
- *> scaling by R.
- *> \endverbatim
- *>
- *> \param[out] COLCND
- *> \verbatim
- *> COLCND is REAL
- *> If INFO = 0, COLCND contains the ratio of the smallest
- *> C(i) to the largest C(i). If COLCND >= 0.1, it is not
- *> worth scaling by C.
- *> \endverbatim
- *>
- *> \param[out] AMAX
- *> \verbatim
- *> AMAX is REAL
- *> Absolute value of largest matrix element. If AMAX is very
- *> close to overflow or very close to underflow, the matrix
- *> should be scaled.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= M: the i-th row of A is exactly zero
- *> > M: the (i-M)-th column of A is exactly zero
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGBcomputational
- *
- * =====================================================================
- SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
- $ AMAX, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDAB, M, N
- REAL AMAX, COLCND, ROWCND
- * ..
- * .. Array Arguments ..
- REAL C( * ), R( * )
- COMPLEX AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, KD
- REAL BIGNUM, RCMAX, RCMIN, SMLNUM, RADIX,
- $ LOGRDX
- COMPLEX ZDUM
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, LOG, REAL, AIMAG
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KL+KU+1 ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGBEQUB', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- ROWCND = ONE
- COLCND = ONE
- AMAX = ZERO
- RETURN
- END IF
- *
- * Get machine constants. Assume SMLNUM is a power of the radix.
- *
- SMLNUM = SLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- RADIX = SLAMCH( 'B' )
- LOGRDX = LOG(RADIX)
- *
- * Compute row scale factors.
- *
- DO 10 I = 1, M
- R( I ) = ZERO
- 10 CONTINUE
- *
- * Find the maximum element in each row.
- *
- KD = KU + 1
- DO 30 J = 1, N
- DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
- R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) )
- 20 CONTINUE
- 30 CONTINUE
- DO I = 1, M
- IF( R( I ).GT.ZERO ) THEN
- R( I ) = RADIX**INT( LOG( R( I ) ) / LOGRDX )
- END IF
- END DO
- *
- * Find the maximum and minimum scale factors.
- *
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 40 I = 1, M
- RCMAX = MAX( RCMAX, R( I ) )
- RCMIN = MIN( RCMIN, R( I ) )
- 40 CONTINUE
- AMAX = RCMAX
- *
- IF( RCMIN.EQ.ZERO ) THEN
- *
- * Find the first zero scale factor and return an error code.
- *
- DO 50 I = 1, M
- IF( R( I ).EQ.ZERO ) THEN
- INFO = I
- RETURN
- END IF
- 50 CONTINUE
- ELSE
- *
- * Invert the scale factors.
- *
- DO 60 I = 1, M
- R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
- 60 CONTINUE
- *
- * Compute ROWCND = min(R(I)) / max(R(I)).
- *
- ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- END IF
- *
- * Compute column scale factors.
- *
- DO 70 J = 1, N
- C( J ) = ZERO
- 70 CONTINUE
- *
- * Find the maximum element in each column,
- * assuming the row scaling computed above.
- *
- DO 90 J = 1, N
- DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
- C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) )
- 80 CONTINUE
- IF( C( J ).GT.ZERO ) THEN
- C( J ) = RADIX**INT( LOG( C( J ) ) / LOGRDX )
- END IF
- 90 CONTINUE
- *
- * Find the maximum and minimum scale factors.
- *
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 100 J = 1, N
- RCMIN = MIN( RCMIN, C( J ) )
- RCMAX = MAX( RCMAX, C( J ) )
- 100 CONTINUE
- *
- IF( RCMIN.EQ.ZERO ) THEN
- *
- * Find the first zero scale factor and return an error code.
- *
- DO 110 J = 1, N
- IF( C( J ).EQ.ZERO ) THEN
- INFO = M + J
- RETURN
- END IF
- 110 CONTINUE
- ELSE
- *
- * Invert the scale factors.
- *
- DO 120 J = 1, N
- C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
- 120 CONTINUE
- *
- * Compute COLCND = min(C(J)) / max(C(J)).
- *
- COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- END IF
- *
- RETURN
- *
- * End of CGBEQUB
- *
- END
|