|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static logical c_false = FALSE_;
-
- /* > \brief \b ZUNCSD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZUNCSD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, */
- /* SIGNS, M, P, Q, X11, LDX11, X12, */
- /* LDX12, X21, LDX21, X22, LDX22, THETA, */
- /* U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, */
- /* LDV2T, WORK, LWORK, RWORK, LRWORK, */
- /* IWORK, INFO ) */
-
- /* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS */
- /* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, */
- /* $ LDX21, LDX22, LRWORK, LWORK, M, P, Q */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION THETA( * ) */
- /* DOUBLE PRECISION RWORK( * ) */
- /* COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
- /* $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), */
- /* $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, */
- /* $ * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZUNCSD computes the CS decomposition of an M-by-M partitioned */
- /* > unitary matrix X: */
- /* > */
- /* > [ I 0 0 | 0 0 0 ] */
- /* > [ 0 C 0 | 0 -S 0 ] */
- /* > [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H */
- /* > X = [-----------] = [---------] [---------------------] [---------] . */
- /* > [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] */
- /* > [ 0 S 0 | 0 C 0 ] */
- /* > [ 0 0 I | 0 0 0 ] */
- /* > */
- /* > X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, */
- /* > (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are */
- /* > R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in */
- /* > which R = MIN(P,M-P,Q,M-Q). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBU1 */
- /* > \verbatim */
- /* > JOBU1 is CHARACTER */
- /* > = 'Y': U1 is computed; */
- /* > otherwise: U1 is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBU2 */
- /* > \verbatim */
- /* > JOBU2 is CHARACTER */
- /* > = 'Y': U2 is computed; */
- /* > otherwise: U2 is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV1T */
- /* > \verbatim */
- /* > JOBV1T is CHARACTER */
- /* > = 'Y': V1T is computed; */
- /* > otherwise: V1T is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV2T */
- /* > \verbatim */
- /* > JOBV2T is CHARACTER */
- /* > = 'Y': V2T is computed; */
- /* > otherwise: V2T is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER */
- /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
- /* > order; */
- /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
- /* > major order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SIGNS */
- /* > \verbatim */
- /* > SIGNS is CHARACTER */
- /* > = 'O': The lower-left block is made nonpositive (the */
- /* > "other" convention); */
- /* > otherwise: The upper-right block is made nonpositive (the */
- /* > "default" convention). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows and columns in X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is INTEGER */
- /* > The number of rows in X11 and X12. 0 <= P <= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is INTEGER */
- /* > The number of columns in X11 and X21. 0 <= Q <= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X11 */
- /* > \verbatim */
- /* > X11 is COMPLEX*16 array, dimension (LDX11,Q) */
- /* > On entry, part of the unitary matrix whose CSD is desired. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX11 */
- /* > \verbatim */
- /* > LDX11 is INTEGER */
- /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X12 */
- /* > \verbatim */
- /* > X12 is COMPLEX*16 array, dimension (LDX12,M-Q) */
- /* > On entry, part of the unitary matrix whose CSD is desired. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX12 */
- /* > \verbatim */
- /* > LDX12 is INTEGER */
- /* > The leading dimension of X12. LDX12 >= MAX(1,P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X21 */
- /* > \verbatim */
- /* > X21 is COMPLEX*16 array, dimension (LDX21,Q) */
- /* > On entry, part of the unitary matrix whose CSD is desired. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX21 */
- /* > \verbatim */
- /* > LDX21 is INTEGER */
- /* > The leading dimension of X11. LDX21 >= MAX(1,M-P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X22 */
- /* > \verbatim */
- /* > X22 is COMPLEX*16 array, dimension (LDX22,M-Q) */
- /* > On entry, part of the unitary matrix whose CSD is desired. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX22 */
- /* > \verbatim */
- /* > LDX22 is INTEGER */
- /* > The leading dimension of X11. LDX22 >= MAX(1,M-P). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] THETA */
- /* > \verbatim */
- /* > THETA is DOUBLE PRECISION array, dimension (R), in which R = */
- /* > MIN(P,M-P,Q,M-Q). */
- /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
- /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U1 */
- /* > \verbatim */
- /* > U1 is COMPLEX*16 array, dimension (LDU1,P) */
- /* > If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU1 */
- /* > \verbatim */
- /* > LDU1 is INTEGER */
- /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
- /* > MAX(1,P). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U2 */
- /* > \verbatim */
- /* > U2 is COMPLEX*16 array, dimension (LDU2,M-P) */
- /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary */
- /* > matrix U2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU2 */
- /* > \verbatim */
- /* > LDU2 is INTEGER */
- /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
- /* > MAX(1,M-P). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V1T */
- /* > \verbatim */
- /* > V1T is COMPLEX*16 array, dimension (LDV1T,Q) */
- /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary */
- /* > matrix V1**H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV1T */
- /* > \verbatim */
- /* > LDV1T is INTEGER */
- /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
- /* > MAX(1,Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V2T */
- /* > \verbatim */
- /* > V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) */
- /* > If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary */
- /* > matrix V2**H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV2T */
- /* > \verbatim */
- /* > LDV2T is INTEGER */
- /* > The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= */
- /* > MAX(1,M-Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the work array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK) */
- /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
- /* > If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), */
- /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
- /* > define the matrix in intermediate bidiagonal-block form */
- /* > remaining after nonconvergence. INFO specifies the number */
- /* > of nonzero PHI's. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LRWORK */
- /* > \verbatim */
- /* > LRWORK is INTEGER */
- /* > The dimension of the array RWORK. */
- /* > */
- /* > If LRWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the RWORK array, returns */
- /* > this value as the first entry of the work array, and no error */
- /* > message related to LRWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: ZBBCSD did not converge. See the description of RWORK */
- /* > above for details. */
- /* > \endverbatim */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
- /* > Algorithms, 50(1):33-65, 2009. */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void zuncsd_(char *jobu1, char *jobu2, char *jobv1t, char *
- jobv2t, char *trans, char *signs, integer *m, integer *p, integer *q,
- doublecomplex *x11, integer *ldx11, doublecomplex *x12, integer *
- ldx12, doublecomplex *x21, integer *ldx21, doublecomplex *x22,
- integer *ldx22, doublereal *theta, doublecomplex *u1, integer *ldu1,
- doublecomplex *u2, integer *ldu2, doublecomplex *v1t, integer *ldv1t,
- doublecomplex *v2t, integer *ldv2t, doublecomplex *work, integer *
- lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *
- info)
- {
- /* System generated locals */
- integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
- v2t_dim1, v2t_offset, x11_dim1, x11_offset, x12_dim1, x12_offset,
- x21_dim1, x21_offset, x22_dim1, x22_offset, i__1, i__2, i__3,
- i__4, i__5, i__6;
-
- /* Local variables */
- integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi;
- logical colmajor;
- integer lworkmin;
- logical defaultsigns;
- integer lworkopt, i__, j;
- extern logical lsame_(char *, char *);
- integer childinfo, p1, q1, lbbcsdworkmin, itaup1, itaup2, itauq1, itauq2,
- lorbdbworkmin, lrworkmin, lbbcsdworkopt;
- logical wantu1, wantu2;
- integer lrworkopt, ibbcsd, lorbdbworkopt, iorbdb, lorglqworkmin;
- extern /* Subroutine */ void zbbcsd_(char *, char *, char *, char *, char *
- , integer *, integer *, integer *, doublereal *, doublereal *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *);
- integer lorgqrworkmin;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer lorglqworkopt;
- extern /* Subroutine */ void zunbdb_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *, doublecomplex *, doublecomplex *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *,
- integer *);
- integer lorgqrworkopt, iorglq;
- extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- integer iorgqr;
- extern /* Subroutine */ void zlapmr_(logical *, integer *, integer *,
- doublecomplex *, integer *, integer *);
- char signst[1];
- extern /* Subroutine */ void zlapmt_(logical *, integer *, integer *,
- doublecomplex *, integer *, integer *);
- char transt[1];
- integer lbbcsdwork;
- logical lquery;
- extern /* Subroutine */ void zunglq_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
- integer lorbdbwork;
- extern /* Subroutine */ void zungqr_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, integer *);
- integer lorglqwork, lorgqrwork;
- logical wantv1t, wantv2t, lrquery;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* =================================================================== */
-
-
- /* Test input arguments */
-
- /* Parameter adjustments */
- x11_dim1 = *ldx11;
- x11_offset = 1 + x11_dim1 * 1;
- x11 -= x11_offset;
- x12_dim1 = *ldx12;
- x12_offset = 1 + x12_dim1 * 1;
- x12 -= x12_offset;
- x21_dim1 = *ldx21;
- x21_offset = 1 + x21_dim1 * 1;
- x21 -= x21_offset;
- x22_dim1 = *ldx22;
- x22_offset = 1 + x22_dim1 * 1;
- x22 -= x22_offset;
- --theta;
- u1_dim1 = *ldu1;
- u1_offset = 1 + u1_dim1 * 1;
- u1 -= u1_offset;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- v1t_dim1 = *ldv1t;
- v1t_offset = 1 + v1t_dim1 * 1;
- v1t -= v1t_offset;
- v2t_dim1 = *ldv2t;
- v2t_offset = 1 + v2t_dim1 * 1;
- v2t -= v2t_offset;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- wantu1 = lsame_(jobu1, "Y");
- wantu2 = lsame_(jobu2, "Y");
- wantv1t = lsame_(jobv1t, "Y");
- wantv2t = lsame_(jobv2t, "Y");
- colmajor = ! lsame_(trans, "T");
- defaultsigns = ! lsame_(signs, "O");
- lquery = *lwork == -1;
- lrquery = *lrwork == -1;
- if (*m < 0) {
- *info = -7;
- } else if (*p < 0 || *p > *m) {
- *info = -8;
- } else if (*q < 0 || *q > *m) {
- *info = -9;
- } else if (colmajor && *ldx11 < f2cmax(1,*p)) {
- *info = -11;
- } else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
- *info = -11;
- } else if (colmajor && *ldx12 < f2cmax(1,*p)) {
- *info = -13;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
- *info = -13;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
- *info = -15;
- } else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
- *info = -15;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
- *info = -17;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
- *info = -17;
- } else if (wantu1 && *ldu1 < *p) {
- *info = -20;
- } else if (wantu2 && *ldu2 < *m - *p) {
- *info = -22;
- } else if (wantv1t && *ldv1t < *q) {
- *info = -24;
- } else if (wantv2t && *ldv2t < *m - *q) {
- *info = -26;
- }
- }
- }
- }
- }
-
- /* Work with transpose if convenient */
-
- /* Computing MIN */
- i__1 = *p, i__2 = *m - *p;
- /* Computing MIN */
- i__3 = *q, i__4 = *m - *q;
- if (*info == 0 && f2cmin(i__1,i__2) < f2cmin(i__3,i__4)) {
- if (colmajor) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
- if (defaultsigns) {
- *(unsigned char *)signst = 'O';
- } else {
- *(unsigned char *)signst = 'D';
- }
- zuncsd_(jobv1t, jobv2t, jobu1, jobu2, transt, signst, m, q, p, &x11[
- x11_offset], ldx11, &x21[x21_offset], ldx21, &x12[x12_offset],
- ldx12, &x22[x22_offset], ldx22, &theta[1], &v1t[v1t_offset],
- ldv1t, &v2t[v2t_offset], ldv2t, &u1[u1_offset], ldu1, &u2[
- u2_offset], ldu2, &work[1], lwork, &rwork[1], lrwork, &iwork[
- 1], info);
- return;
- }
-
- /* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if */
- /* convenient */
-
- if (*info == 0 && *m - *q < *q) {
- if (defaultsigns) {
- *(unsigned char *)signst = 'O';
- } else {
- *(unsigned char *)signst = 'D';
- }
- i__1 = *m - *p;
- i__2 = *m - *q;
- zuncsd_(jobu2, jobu1, jobv2t, jobv1t, trans, signst, m, &i__1, &i__2,
- &x22[x22_offset], ldx22, &x21[x21_offset], ldx21, &x12[
- x12_offset], ldx12, &x11[x11_offset], ldx11, &theta[1], &u2[
- u2_offset], ldu2, &u1[u1_offset], ldu1, &v2t[v2t_offset],
- ldv2t, &v1t[v1t_offset], ldv1t, &work[1], lwork, &rwork[1],
- lrwork, &iwork[1], info);
- return;
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
-
- /* Real workspace */
-
- iphi = 2;
- /* Computing MAX */
- i__1 = 1, i__2 = *q - 1;
- ib11d = iphi + f2cmax(i__1,i__2);
- ib11e = ib11d + f2cmax(1,*q);
- /* Computing MAX */
- i__1 = 1, i__2 = *q - 1;
- ib12d = ib11e + f2cmax(i__1,i__2);
- ib12e = ib12d + f2cmax(1,*q);
- /* Computing MAX */
- i__1 = 1, i__2 = *q - 1;
- ib21d = ib12e + f2cmax(i__1,i__2);
- ib21e = ib21d + f2cmax(1,*q);
- /* Computing MAX */
- i__1 = 1, i__2 = *q - 1;
- ib22d = ib21e + f2cmax(i__1,i__2);
- ib22e = ib22d + f2cmax(1,*q);
- /* Computing MAX */
- i__1 = 1, i__2 = *q - 1;
- ibbcsd = ib22e + f2cmax(i__1,i__2);
- zbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &
- theta[1], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
- v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &theta[1], &
- theta[1], &theta[1], &theta[1], &theta[1], &theta[1], &theta[
- 1], &theta[1], &rwork[1], &c_n1, &childinfo);
- lbbcsdworkopt = (integer) rwork[1];
- lbbcsdworkmin = lbbcsdworkopt;
- lrworkopt = ibbcsd + lbbcsdworkopt - 1;
- lrworkmin = ibbcsd + lbbcsdworkmin - 1;
- rwork[1] = (doublereal) lrworkopt;
-
- /* Complex workspace */
-
- itaup1 = 2;
- itaup2 = itaup1 + f2cmax(1,*p);
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- itauq1 = itaup2 + f2cmax(i__1,i__2);
- itauq2 = itauq1 + f2cmax(1,*q);
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- iorgqr = itauq2 + f2cmax(i__1,i__2);
- i__1 = *m - *q;
- i__2 = *m - *q;
- i__3 = *m - *q;
- /* Computing MAX */
- i__5 = 1, i__6 = *m - *q;
- i__4 = f2cmax(i__5,i__6);
- zungqr_(&i__1, &i__2, &i__3, &u1[u1_offset], &i__4, &u1[u1_offset], &
- work[1], &c_n1, &childinfo);
- lorgqrworkopt = (integer) work[1].r;
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- lorgqrworkmin = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- iorglq = itauq2 + f2cmax(i__1,i__2);
- i__1 = *m - *q;
- i__2 = *m - *q;
- i__3 = *m - *q;
- /* Computing MAX */
- i__5 = 1, i__6 = *m - *q;
- i__4 = f2cmax(i__5,i__6);
- zunglq_(&i__1, &i__2, &i__3, &u1[u1_offset], &i__4, &u1[u1_offset], &
- work[1], &c_n1, &childinfo);
- lorglqworkopt = (integer) work[1].r;
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- lorglqworkmin = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *q;
- iorbdb = itauq2 + f2cmax(i__1,i__2);
- zunbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[
- x12_offset], ldx12, &x21[x21_offset], ldx21, &x22[x22_offset],
- ldx22, &theta[1], &theta[1], &u1[u1_offset], &u2[u2_offset],
- &v1t[v1t_offset], &v2t[v2t_offset], &work[1], &c_n1, &
- childinfo);
- lorbdbworkopt = (integer) work[1].r;
- lorbdbworkmin = lorbdbworkopt;
- /* Computing MAX */
- i__1 = iorgqr + lorgqrworkopt, i__2 = iorglq + lorglqworkopt, i__1 =
- f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt;
- lworkopt = f2cmax(i__1,i__2) - 1;
- /* Computing MAX */
- i__1 = iorgqr + lorgqrworkmin, i__2 = iorglq + lorglqworkmin, i__1 =
- f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkmin;
- lworkmin = f2cmax(i__1,i__2) - 1;
- i__1 = f2cmax(lworkopt,lworkmin);
- work[1].r = (doublereal) i__1, work[1].i = 0.;
-
- if (*lwork < lworkmin && ! (lquery || lrquery)) {
- *info = -22;
- } else if (*lrwork < lrworkmin && ! (lquery || lrquery)) {
- *info = -24;
- } else {
- lorgqrwork = *lwork - iorgqr + 1;
- lorglqwork = *lwork - iorglq + 1;
- lorbdbwork = *lwork - iorbdb + 1;
- lbbcsdwork = *lrwork - ibbcsd + 1;
- }
- }
-
- /* Abort if any illegal arguments */
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNCSD", &i__1, (ftnlen)6);
- return;
- } else if (lquery || lrquery) {
- return;
- }
-
- /* Transform to bidiagonal block form */
-
- zunbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[x12_offset],
- ldx12, &x21[x21_offset], ldx21, &x22[x22_offset], ldx22, &theta[1]
- , &rwork[iphi], &work[itaup1], &work[itaup2], &work[itauq1], &
- work[itauq2], &work[iorbdb], &lorbdbwork, &childinfo);
-
- /* Accumulate Householder reflectors */
-
- if (colmajor) {
- if (wantu1 && *p > 0) {
- zlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
- zungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
- iorgqr], &lorgqrwork, info);
- }
- if (wantu2 && *m - *p > 0) {
- i__1 = *m - *p;
- zlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
- ldu2);
- i__1 = *m - *p;
- i__2 = *m - *p;
- zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
- work[iorgqr], &lorgqrwork, info);
- }
- if (wantv1t && *q > 0) {
- i__1 = *q - 1;
- i__2 = *q - 1;
- zlacpy_("U", &i__1, &i__2, &x11[(x11_dim1 << 1) + 1], ldx11, &v1t[
- (v1t_dim1 << 1) + 2], ldv1t);
- i__1 = v1t_dim1 + 1;
- v1t[i__1].r = 1., v1t[i__1].i = 0.;
- i__1 = *q;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j * v1t_dim1 + 1;
- v1t[i__2].r = 0., v1t[i__2].i = 0.;
- i__2 = j + v1t_dim1;
- v1t[i__2].r = 0., v1t[i__2].i = 0.;
- }
- i__1 = *q - 1;
- i__2 = *q - 1;
- i__3 = *q - 1;
- zunglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
- work[itauq1], &work[iorglq], &lorglqwork, info);
- }
- if (wantv2t && *m - *q > 0) {
- i__1 = *m - *q;
- zlacpy_("U", p, &i__1, &x12[x12_offset], ldx12, &v2t[v2t_offset],
- ldv2t);
- if (*m - *p > *q) {
- i__1 = *m - *p - *q;
- i__2 = *m - *p - *q;
- zlacpy_("U", &i__1, &i__2, &x22[*q + 1 + (*p + 1) * x22_dim1],
- ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
- }
- if (*m > *q) {
- i__1 = *m - *q;
- i__2 = *m - *q;
- i__3 = *m - *q;
- zunglq_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
- itauq2], &work[iorglq], &lorglqwork, info);
- }
- }
- } else {
- if (wantu1 && *p > 0) {
- zlacpy_("U", q, p, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
- zunglq_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
- iorglq], &lorglqwork, info);
- }
- if (wantu2 && *m - *p > 0) {
- i__1 = *m - *p;
- zlacpy_("U", q, &i__1, &x21[x21_offset], ldx21, &u2[u2_offset],
- ldu2);
- i__1 = *m - *p;
- i__2 = *m - *p;
- zunglq_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
- work[iorglq], &lorglqwork, info);
- }
- if (wantv1t && *q > 0) {
- i__1 = *q - 1;
- i__2 = *q - 1;
- zlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &v1t[(
- v1t_dim1 << 1) + 2], ldv1t);
- i__1 = v1t_dim1 + 1;
- v1t[i__1].r = 1., v1t[i__1].i = 0.;
- i__1 = *q;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j * v1t_dim1 + 1;
- v1t[i__2].r = 0., v1t[i__2].i = 0.;
- i__2 = j + v1t_dim1;
- v1t[i__2].r = 0., v1t[i__2].i = 0.;
- }
- i__1 = *q - 1;
- i__2 = *q - 1;
- i__3 = *q - 1;
- zungqr_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
- work[itauq1], &work[iorgqr], &lorgqrwork, info);
- }
- if (wantv2t && *m - *q > 0) {
- /* Computing MIN */
- i__1 = *p + 1;
- p1 = f2cmin(i__1,*m);
- /* Computing MIN */
- i__1 = *q + 1;
- q1 = f2cmin(i__1,*m);
- i__1 = *m - *q;
- zlacpy_("L", &i__1, p, &x12[x12_offset], ldx12, &v2t[v2t_offset],
- ldv2t);
- if (*m > *p + *q) {
- i__1 = *m - *p - *q;
- i__2 = *m - *p - *q;
- zlacpy_("L", &i__1, &i__2, &x22[p1 + q1 * x22_dim1], ldx22, &
- v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
- }
- i__1 = *m - *q;
- i__2 = *m - *q;
- i__3 = *m - *q;
- zungqr_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
- itauq2], &work[iorgqr], &lorgqrwork, info);
- }
- }
-
- /* Compute the CSD of the matrix in bidiagonal-block form */
-
- zbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &rwork[
- iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
- v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &rwork[ib11d], &
- rwork[ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[
- ib21e], &rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsdwork,
- info);
-
- /* Permute rows and columns to place identity submatrices in top- */
- /* left corner of (1,1)-block and/or bottom-right corner of (1,2)- */
- /* block and/or bottom-right corner of (2,1)-block and/or top-left */
- /* corner of (2,2)-block */
-
- if (*q > 0 && wantu2) {
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = *m - *p - *q + i__;
- }
- i__1 = *m - *p;
- for (i__ = *q + 1; i__ <= i__1; ++i__) {
- iwork[i__] = i__ - *q;
- }
- if (colmajor) {
- i__1 = *m - *p;
- i__2 = *m - *p;
- zlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
- } else {
- i__1 = *m - *p;
- i__2 = *m - *p;
- zlapmr_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
- }
- }
- if (*m > 0 && wantv2t) {
- i__1 = *p;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = *m - *p - *q + i__;
- }
- i__1 = *m - *q;
- for (i__ = *p + 1; i__ <= i__1; ++i__) {
- iwork[i__] = i__ - *p;
- }
- if (! colmajor) {
- i__1 = *m - *q;
- i__2 = *m - *q;
- zlapmt_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
- );
- } else {
- i__1 = *m - *q;
- i__2 = *m - *q;
- zlapmr_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
- );
- }
- }
-
- return;
-
- /* End ZUNCSD */
-
- } /* zuncsd_ */
|