|
- *> \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLARFB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
- * T, LDT, C, LDC, WORK, LDWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIRECT, SIDE, STOREV, TRANS
- * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLARFB applies a complex block reflector H or its transpose H**H to a
- *> complex M-by-N matrix C, from either the left or the right.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply H or H**H from the Left
- *> = 'R': apply H or H**H from the Right
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply H (No transpose)
- *> = 'C': apply H**H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIRECT
- *> \verbatim
- *> DIRECT is CHARACTER*1
- *> Indicates how H is formed from a product of elementary
- *> reflectors
- *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
- *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
- *> \endverbatim
- *>
- *> \param[in] STOREV
- *> \verbatim
- *> STOREV is CHARACTER*1
- *> Indicates how the vectors which define the elementary
- *> reflectors are stored:
- *> = 'C': Columnwise
- *> = 'R': Rowwise
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The order of the matrix T (= the number of elementary
- *> reflectors whose product defines the block reflector).
- *> If SIDE = 'L', M >= K >= 0;
- *> if SIDE = 'R', N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX*16 array, dimension
- *> (LDV,K) if STOREV = 'C'
- *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
- *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
- *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
- *> if STOREV = 'R', LDV >= K.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDT,K)
- *> The triangular K-by-K matrix T in the representation of the
- *> block reflector.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= K.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX*16 array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LDWORK,K)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK.
- *> If SIDE = 'L', LDWORK >= max(1,N);
- *> if SIDE = 'R', LDWORK >= max(1,M).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2013
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The shape of the matrix V and the storage of the vectors which define
- *> the H(i) is best illustrated by the following example with n = 5 and
- *> k = 3. The elements equal to 1 are not stored; the corresponding
- *> array elements are modified but restored on exit. The rest of the
- *> array is not used.
- *>
- *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
- *>
- *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
- *> ( v1 1 ) ( 1 v2 v2 v2 )
- *> ( v1 v2 1 ) ( 1 v3 v3 )
- *> ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *>
- *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
- *>
- *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
- *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
- *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
- *> ( 1 v3 )
- *> ( 1 )
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
- $ T, LDT, C, LDC, WORK, LDWORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2013
- *
- * .. Scalar Arguments ..
- CHARACTER DIRECT, SIDE, STOREV, TRANS
- INTEGER K, LDC, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- CHARACTER TRANST
- INTEGER I, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
- *
- IF( LSAME( TRANS, 'N' ) ) THEN
- TRANST = 'C'
- ELSE
- TRANST = 'N'
- END IF
- *
- IF( LSAME( STOREV, 'C' ) ) THEN
- *
- IF( LSAME( DIRECT, 'F' ) ) THEN
- *
- * Let V = ( V1 ) (first K rows)
- * ( V2 )
- * where V1 is unit lower triangular.
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C or H**H * C where C = ( C1 )
- * ( C2 )
- *
- * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
- *
- * W := C1**H
- *
- DO 10 J = 1, K
- CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
- CALL ZLACGV( N, WORK( 1, J ), 1 )
- 10 CONTINUE
- *
- * W := W * V1
- *
- CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
- $ K, ONE, V, LDV, WORK, LDWORK )
- IF( M.GT.K ) THEN
- *
- * W := W + C2**H * V2
- *
- CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
- $ K, M-K, ONE, C( K+1, 1 ), LDC,
- $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
- END IF
- *
- * W := W * T**H or W * T
- *
- CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - V * W**H
- *
- IF( M.GT.K ) THEN
- *
- * C2 := C2 - V2 * W**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose',
- $ M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
- $ LDWORK, ONE, C( K+1, 1 ), LDC )
- END IF
- *
- * W := W * V1**H
- *
- CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
- $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
- *
- * C1 := C1 - W**H
- *
- DO 30 J = 1, K
- DO 20 I = 1, N
- C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
- 20 CONTINUE
- 30 CONTINUE
- *
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form C * H or C * H**H where C = ( C1 C2 )
- *
- * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
- *
- * W := C1
- *
- DO 40 J = 1, K
- CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
- 40 CONTINUE
- *
- * W := W * V1
- *
- CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
- $ K, ONE, V, LDV, WORK, LDWORK )
- IF( N.GT.K ) THEN
- *
- * W := W + C2 * V2
- *
- CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
- $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
- $ ONE, WORK, LDWORK )
- END IF
- *
- * W := W * T or W * T**H
- *
- CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - W * V**H
- *
- IF( N.GT.K ) THEN
- *
- * C2 := C2 - W * V2**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
- $ N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
- $ LDV, ONE, C( 1, K+1 ), LDC )
- END IF
- *
- * W := W * V1**H
- *
- CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
- $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
- *
- * C1 := C1 - W
- *
- DO 60 J = 1, K
- DO 50 I = 1, M
- C( I, J ) = C( I, J ) - WORK( I, J )
- 50 CONTINUE
- 60 CONTINUE
- END IF
- *
- ELSE
- *
- * Let V = ( V1 )
- * ( V2 ) (last K rows)
- * where V2 is unit upper triangular.
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C or H**H * C where C = ( C1 )
- * ( C2 )
- *
- * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
- *
- * W := C2**H
- *
- DO 70 J = 1, K
- CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
- CALL ZLACGV( N, WORK( 1, J ), 1 )
- 70 CONTINUE
- *
- * W := W * V2
- *
- CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
- $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
- IF( M.GT.K ) THEN
- *
- * W := W + C1**H * V1
- *
- CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
- $ K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
- $ LDWORK )
- END IF
- *
- * W := W * T**H or W * T
- *
- CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - V * W**H
- *
- IF( M.GT.K ) THEN
- *
- * C1 := C1 - V1 * W**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose',
- $ M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
- $ ONE, C, LDC )
- END IF
- *
- * W := W * V2**H
- *
- CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
- $ 'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
- $ LDWORK )
- *
- * C2 := C2 - W**H
- *
- DO 90 J = 1, K
- DO 80 I = 1, N
- C( M-K+J, I ) = C( M-K+J, I ) -
- $ DCONJG( WORK( I, J ) )
- 80 CONTINUE
- 90 CONTINUE
- *
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form C * H or C * H**H where C = ( C1 C2 )
- *
- * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
- *
- * W := C2
- *
- DO 100 J = 1, K
- CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
- 100 CONTINUE
- *
- * W := W * V2
- *
- CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
- $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
- IF( N.GT.K ) THEN
- *
- * W := W + C1 * V1
- *
- CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
- $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
- END IF
- *
- * W := W * T or W * T**H
- *
- CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - W * V**H
- *
- IF( N.GT.K ) THEN
- *
- * C1 := C1 - W * V1**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
- $ N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
- $ C, LDC )
- END IF
- *
- * W := W * V2**H
- *
- CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
- $ 'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
- $ LDWORK )
- *
- * C2 := C2 - W
- *
- DO 120 J = 1, K
- DO 110 I = 1, M
- C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
- 110 CONTINUE
- 120 CONTINUE
- END IF
- END IF
- *
- ELSE IF( LSAME( STOREV, 'R' ) ) THEN
- *
- IF( LSAME( DIRECT, 'F' ) ) THEN
- *
- * Let V = ( V1 V2 ) (V1: first K columns)
- * where V1 is unit upper triangular.
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C or H**H * C where C = ( C1 )
- * ( C2 )
- *
- * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
- *
- * W := C1**H
- *
- DO 130 J = 1, K
- CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
- CALL ZLACGV( N, WORK( 1, J ), 1 )
- 130 CONTINUE
- *
- * W := W * V1**H
- *
- CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
- $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
- IF( M.GT.K ) THEN
- *
- * W := W + C2**H * V2**H
- *
- CALL ZGEMM( 'Conjugate transpose',
- $ 'Conjugate transpose', N, K, M-K, ONE,
- $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
- $ WORK, LDWORK )
- END IF
- *
- * W := W * T**H or W * T
- *
- CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - V**H * W**H
- *
- IF( M.GT.K ) THEN
- *
- * C2 := C2 - V2**H * W**H
- *
- CALL ZGEMM( 'Conjugate transpose',
- $ 'Conjugate transpose', M-K, N, K, -ONE,
- $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
- $ C( K+1, 1 ), LDC )
- END IF
- *
- * W := W * V1
- *
- CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
- $ K, ONE, V, LDV, WORK, LDWORK )
- *
- * C1 := C1 - W**H
- *
- DO 150 J = 1, K
- DO 140 I = 1, N
- C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
- 140 CONTINUE
- 150 CONTINUE
- *
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form C * H or C * H**H where C = ( C1 C2 )
- *
- * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
- *
- * W := C1
- *
- DO 160 J = 1, K
- CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
- 160 CONTINUE
- *
- * W := W * V1**H
- *
- CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
- $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
- IF( N.GT.K ) THEN
- *
- * W := W + C2 * V2**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
- $ K, N-K, ONE, C( 1, K+1 ), LDC,
- $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
- END IF
- *
- * W := W * T or W * T**H
- *
- CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - W * V
- *
- IF( N.GT.K ) THEN
- *
- * C2 := C2 - W * V2
- *
- CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
- $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
- $ C( 1, K+1 ), LDC )
- END IF
- *
- * W := W * V1
- *
- CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
- $ K, ONE, V, LDV, WORK, LDWORK )
- *
- * C1 := C1 - W
- *
- DO 180 J = 1, K
- DO 170 I = 1, M
- C( I, J ) = C( I, J ) - WORK( I, J )
- 170 CONTINUE
- 180 CONTINUE
- *
- END IF
- *
- ELSE
- *
- * Let V = ( V1 V2 ) (V2: last K columns)
- * where V2 is unit lower triangular.
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C or H**H * C where C = ( C1 )
- * ( C2 )
- *
- * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
- *
- * W := C2**H
- *
- DO 190 J = 1, K
- CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
- CALL ZLACGV( N, WORK( 1, J ), 1 )
- 190 CONTINUE
- *
- * W := W * V2**H
- *
- CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
- $ 'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
- $ LDWORK )
- IF( M.GT.K ) THEN
- *
- * W := W + C1**H * V1**H
- *
- CALL ZGEMM( 'Conjugate transpose',
- $ 'Conjugate transpose', N, K, M-K, ONE, C,
- $ LDC, V, LDV, ONE, WORK, LDWORK )
- END IF
- *
- * W := W * T**H or W * T
- *
- CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - V**H * W**H
- *
- IF( M.GT.K ) THEN
- *
- * C1 := C1 - V1**H * W**H
- *
- CALL ZGEMM( 'Conjugate transpose',
- $ 'Conjugate transpose', M-K, N, K, -ONE, V,
- $ LDV, WORK, LDWORK, ONE, C, LDC )
- END IF
- *
- * W := W * V2
- *
- CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
- $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
- *
- * C2 := C2 - W**H
- *
- DO 210 J = 1, K
- DO 200 I = 1, N
- C( M-K+J, I ) = C( M-K+J, I ) -
- $ DCONJG( WORK( I, J ) )
- 200 CONTINUE
- 210 CONTINUE
- *
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form C * H or C * H**H where C = ( C1 C2 )
- *
- * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
- *
- * W := C2
- *
- DO 220 J = 1, K
- CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
- 220 CONTINUE
- *
- * W := W * V2**H
- *
- CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
- $ 'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
- $ LDWORK )
- IF( N.GT.K ) THEN
- *
- * W := W + C1 * V1**H
- *
- CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
- $ K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
- $ LDWORK )
- END IF
- *
- * W := W * T or W * T**H
- *
- CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
- $ ONE, T, LDT, WORK, LDWORK )
- *
- * C := C - W * V
- *
- IF( N.GT.K ) THEN
- *
- * C1 := C1 - W * V1
- *
- CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
- $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
- END IF
- *
- * W := W * V2
- *
- CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
- $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
- *
- * C1 := C1 - W
- *
- DO 240 J = 1, K
- DO 230 I = 1, M
- C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
- 230 CONTINUE
- 240 CONTINUE
- *
- END IF
- *
- END IF
- END IF
- *
- RETURN
- *
- * End of ZLARFB
- *
- END
|