|
- /*********************************************************************/
- /* Copyright 2009, 2010 The University of Texas at Austin. */
- /* All rights reserved. */
- /* */
- /* Redistribution and use in source and binary forms, with or */
- /* without modification, are permitted provided that the following */
- /* conditions are met: */
- /* */
- /* 1. Redistributions of source code must retain the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer. */
- /* */
- /* 2. Redistributions in binary form must reproduce the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer in the documentation and/or other materials */
- /* provided with the distribution. */
- /* */
- /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
- /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
- /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
- /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
- /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
- /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
- /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
- /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
- /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
- /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
- /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
- /* POSSIBILITY OF SUCH DAMAGE. */
- /* */
- /* The views and conclusions contained in the software and */
- /* documentation are those of the authors and should not be */
- /* interpreted as representing official policies, either expressed */
- /* or implied, of The University of Texas at Austin. */
- /*********************************************************************/
-
- #ifndef CACHE_LINE_SIZE
- #define CACHE_LINE_SIZE 8
- #endif
-
- #ifndef DIVIDE_RATE
- #define DIVIDE_RATE 2
- #endif
-
- #ifndef SWITCH_RATIO
- #define SWITCH_RATIO 2
- #endif
-
- //The array of job_t may overflow the stack.
- //Instead, use malloc to alloc job_t.
- #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
- #define USE_ALLOC_HEAP
- #endif
-
- #ifndef GEMM_LOCAL
- #if defined(NN)
- #define GEMM_LOCAL GEMM_NN
- #elif defined(NT)
- #define GEMM_LOCAL GEMM_NT
- #elif defined(NR)
- #define GEMM_LOCAL GEMM_NR
- #elif defined(NC)
- #define GEMM_LOCAL GEMM_NC
- #elif defined(TN)
- #define GEMM_LOCAL GEMM_TN
- #elif defined(TT)
- #define GEMM_LOCAL GEMM_TT
- #elif defined(TR)
- #define GEMM_LOCAL GEMM_TR
- #elif defined(TC)
- #define GEMM_LOCAL GEMM_TC
- #elif defined(RN)
- #define GEMM_LOCAL GEMM_RN
- #elif defined(RT)
- #define GEMM_LOCAL GEMM_RT
- #elif defined(RR)
- #define GEMM_LOCAL GEMM_RR
- #elif defined(RC)
- #define GEMM_LOCAL GEMM_RC
- #elif defined(CN)
- #define GEMM_LOCAL GEMM_CN
- #elif defined(CT)
- #define GEMM_LOCAL GEMM_CT
- #elif defined(CR)
- #define GEMM_LOCAL GEMM_CR
- #elif defined(CC)
- #define GEMM_LOCAL GEMM_CC
- #endif
- #endif
-
- typedef struct {
- volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
- } job_t;
-
-
- #ifndef BETA_OPERATION
- #ifndef COMPLEX
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #else
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], BETA[1], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef ICOPY_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef OCOPY_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef KERNEL_FUNC
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- #define KERNEL_FUNC GEMM_KERNEL_N
- #endif
- #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
- #define KERNEL_FUNC GEMM_KERNEL_L
- #endif
- #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
- #define KERNEL_FUNC GEMM_KERNEL_R
- #endif
- #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
- #define KERNEL_FUNC GEMM_KERNEL_B
- #endif
- #endif
-
- #ifndef KERNEL_OPERATION
- #ifndef COMPLEX
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #else
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef FUSED_KERNEL_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
-
- #endif
- #else
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
- #endif
-
- #ifndef A
- #define A args -> a
- #endif
- #ifndef LDA
- #define LDA args -> lda
- #endif
- #ifndef B
- #define B args -> b
- #endif
- #ifndef LDB
- #define LDB args -> ldb
- #endif
- #ifndef C
- #define C args -> c
- #endif
- #ifndef LDC
- #define LDC args -> ldc
- #endif
- #ifndef M
- #define M args -> m
- #endif
- #ifndef N
- #define N args -> n
- #endif
- #ifndef K
- #define K args -> k
- #endif
-
- #ifdef TIMING
- #define START_RPCC() rpcc_counter = rpcc()
- #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
- #else
- #define START_RPCC()
- #define STOP_RPCC(COUNTER)
- #endif
-
- static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
-
- FLOAT *buffer[DIVIDE_RATE];
-
- BLASLONG k, lda, ldb, ldc;
- BLASLONG m_from, m_to, n_from, n_to, N_from, N_to;
-
- FLOAT *alpha, *beta;
- FLOAT *a, *b, *c;
- job_t *job = (job_t *)args -> common;
- BLASLONG xxx, bufferside;
-
- BLASLONG ls, min_l, jjs, min_jj;
- BLASLONG is, min_i, div_n;
-
- BLASLONG i, current;
- BLASLONG l1stride;
-
- #ifdef TIMING
- BLASULONG rpcc_counter;
- BLASULONG copy_A = 0;
- BLASULONG copy_B = 0;
- BLASULONG kernel = 0;
- BLASULONG waiting1 = 0;
- BLASULONG waiting2 = 0;
- BLASULONG waiting3 = 0;
- BLASULONG waiting6[MAX_CPU_NUMBER];
- BLASULONG ops = 0;
-
- for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
- #endif
-
- k = K;
-
- a = (FLOAT *)A;
- b = (FLOAT *)B;
- c = (FLOAT *)C;
-
- lda = LDA;
- ldb = LDB;
- ldc = LDC;
-
- alpha = (FLOAT *)args -> alpha;
- beta = (FLOAT *)args -> beta;
-
- m_from = 0;
- m_to = M;
-
- if (range_m) {
- m_from = range_m[0];
- m_to = range_m[1];
- }
-
- n_from = 0;
- n_to = N;
-
- N_from = 0;
- N_to = N;
-
- if (range_n) {
- n_from = range_n[mypos + 0];
- n_to = range_n[mypos + 1];
-
- N_from = range_n[0];
- N_to = range_n[args -> nthreads];
- }
-
- if (beta) {
- #ifndef COMPLEX
- if (beta[0] != ONE)
- #else
- if ((beta[0] != ONE) || (beta[1] != ZERO))
- #endif
- BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc);
- }
-
- if ((k == 0) || (alpha == NULL)) return 0;
-
- if ((alpha[0] == ZERO)
- #ifdef COMPLEX
- && (alpha[1] == ZERO)
- #endif
- ) return 0;
-
- #if 0
- fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n",
- mypos, m_from, m_to, n_from, n_to, N_from, N_to);
-
- fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
-
- #endif
-
- div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
-
- buffer[0] = sb;
- for (i = 1; i < DIVIDE_RATE; i++) {
- buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE;
- }
-
-
- for(ls = 0; ls < k; ls += min_l){
-
- min_l = k - ls;
-
- if (min_l >= GEMM_Q * 2) {
- min_l = GEMM_Q;
- } else {
- if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
- }
-
- l1stride = 1;
- min_i = m_to - m_from;
-
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else {
- if (min_i > GEMM_P) {
- min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- } else {
- if (args -> nthreads == 1) l1stride = 0;
- }
- }
-
- START_RPCC();
-
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
-
- STOP_RPCC(copy_A);
-
- div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
-
- for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
-
- START_RPCC();
-
- /* Make sure if no one is using buffer */
- for (i = 0; i < args -> nthreads; i++)
- while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
-
- STOP_RPCC(waiting1);
-
- #if defined(FUSED_GEMM) && !defined(TIMING)
-
- FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
- sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
-
- #else
-
- for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
- min_jj = MIN(n_to, xxx + div_n) - jjs;
-
- if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
- else
- if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
- else
- if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
-
-
- START_RPCC();
-
- OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
- buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
-
- STOP_RPCC(copy_B);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
- sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
- c, ldc, m_from, jjs);
-
- STOP_RPCC(kernel);
-
- #ifdef TIMING
- ops += 2 * min_i * min_jj * min_l;
- #endif
-
- }
- #endif
-
- for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
- WMB;
- }
-
- current = mypos;
-
- do {
- current ++;
- if (current >= args -> nthreads) current = 0;
-
- div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
-
- for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
-
- if (current != mypos) {
-
- START_RPCC();
-
- /* thread has to wait */
- while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
-
- STOP_RPCC(waiting2);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
- sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
- c, ldc, m_from, xxx);
-
- STOP_RPCC(kernel);
- #ifdef TIMING
- ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
- #endif
- }
-
- if (m_to - m_from == min_i) {
- job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
- }
- }
- } while (current != mypos);
-
-
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
-
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else
- if (min_i > GEMM_P) {
- min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- }
-
- START_RPCC();
-
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
-
- STOP_RPCC(copy_A);
-
- current = mypos;
- do {
-
- div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
-
- for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
- sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
- c, ldc, is, xxx);
-
- STOP_RPCC(kernel);
-
- #ifdef TIMING
- ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
- #endif
-
- if (is + min_i >= m_to) {
- /* Thread doesn't need this buffer any more */
- job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
- WMB;
- }
- }
-
- current ++;
- if (current >= args -> nthreads) current = 0;
-
- } while (current != mypos);
-
- }
-
- }
-
- START_RPCC();
-
- for (i = 0; i < args -> nthreads; i++) {
- for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
- while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
- }
- }
-
- STOP_RPCC(waiting3);
-
- #ifdef TIMING
- BLASLONG waiting = waiting1 + waiting2 + waiting3;
- BLASLONG total = copy_A + copy_B + kernel + waiting;
-
- fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
- mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
- (double)waiting1 /(double)total * 100.,
- (double)waiting2 /(double)total * 100.,
- (double)waiting3 /(double)total * 100.,
- (double)ops/(double)kernel / 4. * 100.);
-
- #if 0
- fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
- mypos, copy_A, copy_B, waiting);
-
- fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
- mypos,
- (double)waiting1/(double)waiting * 100.,
- (double)waiting2/(double)waiting * 100.,
- (double)waiting3/(double)waiting * 100.);
- #endif
- fprintf(stderr, "\n");
- #endif
-
- return 0;
- }
-
- static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
- *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
-
- blas_arg_t newarg;
-
- #ifndef USE_ALLOC_HEAP
- job_t job[MAX_CPU_NUMBER];
- #else
- job_t * job = NULL;
- #endif
-
- blas_queue_t queue[MAX_CPU_NUMBER];
-
- BLASLONG range_M[MAX_CPU_NUMBER + 1];
- BLASLONG range_N[MAX_CPU_NUMBER + 1];
-
- BLASLONG num_cpu_m, num_cpu_n;
-
- BLASLONG nthreads = args -> nthreads;
-
- BLASLONG width, i, j, k, js;
- BLASLONG m, n, n_from, n_to;
- int mode;
-
- #ifndef COMPLEX
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
- #else
- mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
- #endif
- #else
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
- #else
- mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
- #endif
- #endif
-
- newarg.m = args -> m;
- newarg.n = args -> n;
- newarg.k = args -> k;
- newarg.a = args -> a;
- newarg.b = args -> b;
- newarg.c = args -> c;
- newarg.lda = args -> lda;
- newarg.ldb = args -> ldb;
- newarg.ldc = args -> ldc;
- newarg.alpha = args -> alpha;
- newarg.beta = args -> beta;
- newarg.nthreads = args -> nthreads;
-
- #ifdef USE_ALLOC_HEAP
- job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
- if(job==NULL){
- fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
- exit(1);
- }
- #endif
-
- newarg.common = (void *)job;
-
- #ifdef PARAMTEST
- newarg.gemm_p = args -> gemm_p;
- newarg.gemm_q = args -> gemm_q;
- newarg.gemm_r = args -> gemm_r;
- #endif
-
- if (!range_m) {
- range_M[0] = 0;
- m = args -> m;
- } else {
- range_M[0] = range_m[0];
- m = range_m[1] - range_m[0];
- }
-
- num_cpu_m = 0;
-
- while (m > 0){
-
- width = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m);
-
- m -= width;
- if (m < 0) width = width + m;
-
- range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
-
- num_cpu_m ++;
- }
-
- for (i = 0; i < num_cpu_m; i++) {
- queue[i].mode = mode;
- queue[i].routine = inner_thread;
- queue[i].args = &newarg;
- queue[i].range_m = &range_M[i];
- queue[i].range_n = &range_N[0];
- queue[i].sa = NULL;
- queue[i].sb = NULL;
- queue[i].next = &queue[i + 1];
- }
-
- queue[0].sa = sa;
- queue[0].sb = sb;
-
- if (!range_n) {
- n_from = 0;
- n_to = args -> n;
- } else {
- n_from = range_n[0];
- n_to = range_n[1];
- }
-
- for(js = n_from; js < n_to; js += GEMM_R * nthreads){
- n = n_to - js;
- if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
-
- range_N[0] = js;
-
- num_cpu_n = 0;
-
- while (n > 0){
-
- width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
-
- n -= width;
- if (n < 0) width = width + n;
-
- range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
-
- num_cpu_n ++;
- }
-
- for (j = 0; j < num_cpu_m; j++) {
- for (i = 0; i < num_cpu_m; i++) {
- for (k = 0; k < DIVIDE_RATE; k++) {
- job[j].working[i][CACHE_LINE_SIZE * k] = 0;
- }
- }
- }
-
- queue[num_cpu_m - 1].next = NULL;
-
- exec_blas(num_cpu_m, queue);
- }
-
- #ifdef USE_ALLOC_HEAP
- free(job);
- #endif
-
- return 0;
- }
-
- int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
-
- BLASLONG m = args -> m;
- BLASLONG n = args -> n;
- BLASLONG nthreads = args -> nthreads;
- BLASLONG divN, divT;
- int mode;
-
- if (nthreads == 1) {
- GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
- return 0;
- }
-
- if (range_m) {
- BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
- BLASLONG m_to = *(((BLASLONG *)range_m) + 1);
-
- m = m_to - m_from;
- }
-
- if (range_n) {
- BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
- BLASLONG n_to = *(((BLASLONG *)range_n) + 1);
-
- n = n_to - n_from;
- }
-
- if ((m < nthreads * SWITCH_RATIO) || (n < nthreads * SWITCH_RATIO)) {
- GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
- return 0;
- }
-
- divT = nthreads;
- divN = 1;
-
- #if 0
- while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) {
- do {
- divT --;
- divN = 1;
- while (divT * divN < nthreads) divN ++;
- } while ((divT * divN != nthreads) && (divT > 1));
- }
- #endif
-
- // fprintf(stderr, "divN = %4ld divT = %4ld\n", divN, divT);
-
- args -> nthreads = divT;
-
- if (divN == 1){
-
- gemm_driver(args, range_m, range_n, sa, sb, 0);
- } else {
- #ifndef COMPLEX
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_REAL;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_REAL;
- #else
- mode = BLAS_SINGLE | BLAS_REAL;
- #endif
- #else
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_COMPLEX;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_COMPLEX;
- #else
- mode = BLAS_SINGLE | BLAS_COMPLEX;
- #endif
- #endif
-
- #if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \
- defined(CN) || defined(CT) || defined(CR) || defined(CC)
- mode |= (BLAS_TRANSA_T);
- #endif
- #if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \
- defined(NC) || defined(TC) || defined(RC) || defined(CC)
- mode |= (BLAS_TRANSB_T);
- #endif
-
- #ifdef OS_WINDOWS
- gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL, sa, sb, divN);
- #else
- gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN);
- #endif
-
- }
-
- return 0;
- }
|