|
- import pytest
- import numpy as np
- from openblas_wrap import (
- # level 1
- dnrm2, ddot, daxpy,
- # level 3
- dgemm, dsyrk,
- # lapack
- dgesv, # linalg.solve
- dgesdd, dgesdd_lwork, # linalg.svd
- dsyev, dsyev_lwork, # linalg.eigh
- )
-
- # ### BLAS level 1 ###
-
- # dnrm2
-
- dnrm2_sizes = [100, 1000]
-
- def run_dnrm2(n, x, incx):
- res = dnrm2(x, n, incx=incx)
- return res
-
-
- @pytest.mark.parametrize('n', dnrm2_sizes)
- def test_nrm2(benchmark, n):
- rndm = np.random.RandomState(1234)
- x = np.array(rndm.uniform(size=(n,)), dtype=float)
- result = benchmark(run_dnrm2, n, x, 1)
-
-
- # ddot
-
- ddot_sizes = [100, 1000]
-
- def run_ddot(x, y,):
- res = ddot(x, y)
- return res
-
-
- @pytest.mark.parametrize('n', ddot_sizes)
- def test_dot(benchmark, n):
- rndm = np.random.RandomState(1234)
- x = np.array(rndm.uniform(size=(n,)), dtype=float)
- y = np.array(rndm.uniform(size=(n,)), dtype=float)
- result = benchmark(run_ddot, x, y)
-
-
- # daxpy
-
- daxpy_sizes = [100, 1000]
-
- def run_daxpy(x, y,):
- res = daxpy(x, y, a=2.0)
- return res
-
-
- @pytest.mark.parametrize('n', daxpy_sizes)
- def test_daxpy(benchmark, n):
- rndm = np.random.RandomState(1234)
- x = np.array(rndm.uniform(size=(n,)), dtype=float)
- y = np.array(rndm.uniform(size=(n,)), dtype=float)
- result = benchmark(run_daxpy, x, y)
-
-
-
-
- # ### BLAS level 3 ###
-
- # dgemm
-
- gemm_sizes = [100, 1000]
-
- def run_gemm(a, b, c):
- alpha = 1.0
- res = dgemm(alpha, a, b, c=c, overwrite_c=True)
- return res
-
-
- @pytest.mark.parametrize('n', gemm_sizes)
- def test_gemm(benchmark, n):
- rndm = np.random.RandomState(1234)
- a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
- b = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
- c = np.empty((n, n), dtype=float, order='F')
- result = benchmark(run_gemm, a, b, c)
- assert result is c
-
-
- # dsyrk
-
- syrk_sizes = [100, 1000]
-
-
- def run_syrk(a, c):
- res = dsyrk(1.0, a, c=c, overwrite_c=True)
- return res
-
-
- @pytest.mark.parametrize('n', syrk_sizes)
- def test_syrk(benchmark, n):
- rndm = np.random.RandomState(1234)
- a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
- c = np.empty((n, n), dtype=float, order='F')
- result = benchmark(run_syrk, a, c)
- assert result is c
-
-
- # ### LAPACK ###
-
- # linalg.solve
-
- gesv_sizes = [100, 1000]
-
-
- def run_gesv(a, b):
- res = dgesv(a, b, overwrite_a=True, overwrite_b=True)
- return res
-
-
- @pytest.mark.parametrize('n', gesv_sizes)
- def test_gesv(benchmark, n):
- rndm = np.random.RandomState(1234)
- a = (np.array(rndm.uniform(size=(n, n)), dtype=float, order='F') +
- np.eye(n, order='F'))
- b = np.array(rndm.uniform(size=(n, 1)), order='F')
- lu, piv, x, info = benchmark(run_gesv, a, b)
- assert lu is a
- assert x is b
- assert info == 0
-
-
- # linalg.svd
-
- gesdd_sizes = [(100, 5), (1000, 222)]
-
-
- def run_gesdd(a, lwork):
- res = dgesdd(a, lwork=lwork, full_matrices=False, overwrite_a=False)
- return res
-
-
- @pytest.mark.parametrize('mn', gesdd_sizes)
- def test_gesdd(benchmark, mn):
- m, n = mn
- rndm = np.random.RandomState(1234)
- a = np.array(rndm.uniform(size=(m, n)), dtype=float, order='F')
-
- lwork, info = dgesdd_lwork(m, n)
- lwork = int(lwork)
- assert info == 0
-
- u, s, vt, info = benchmark(run_gesdd, a, lwork)
-
- assert info == 0
- np.testing.assert_allclose(u @ np.diag(s) @ vt, a, atol=1e-13)
-
-
- # linalg.eigh
-
- syev_sizes = [50, 200]
-
-
- def run_syev(a, lwork):
- res = dsyev(a, lwork=lwork, overwrite_a=True)
- return res
-
-
- @pytest.mark.parametrize('n', syev_sizes)
- def test_syev(benchmark, n):
- rndm = np.random.RandomState(1234)
- a = rndm.uniform(size=(n, n))
- a = np.asarray(a + a.T, dtype=float, order='F')
- a_ = a.copy()
-
- lwork, info = dsyev_lwork(n)
- lwork = int(lwork)
- assert info == 0
-
- w, v, info = benchmark(run_syev, a, lwork)
-
- assert info == 0
- assert a is v # overwrite_a=True
-
|