|
- *> \brief \b ZHERK
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
- *
- * .. Scalar Arguments ..
- * DOUBLE PRECISION ALPHA,BETA
- * INTEGER K,LDA,LDC,N
- * CHARACTER TRANS,UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A(LDA,*),C(LDC,*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHERK performs one of the hermitian rank k operations
- *>
- *> C := alpha*A*A**H + beta*C,
- *>
- *> or
- *>
- *> C := alpha*A**H*A + beta*C,
- *>
- *> where alpha and beta are real scalars, C is an n by n hermitian
- *> matrix and A is an n by k matrix in the first case and a k by n
- *> matrix in the second case.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the array C is to be referenced as
- *> follows:
- *>
- *> UPLO = 'U' or 'u' Only the upper triangular part of C
- *> is to be referenced.
- *>
- *> UPLO = 'L' or 'l' Only the lower triangular part of C
- *> is to be referenced.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> On entry, TRANS specifies the operation to be performed as
- *> follows:
- *>
- *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
- *>
- *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix C. N must be
- *> at least zero.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> On entry with TRANS = 'N' or 'n', K specifies the number
- *> of columns of the matrix A, and on entry with
- *> TRANS = 'C' or 'c', K specifies the number of rows of the
- *> matrix A. K must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is DOUBLE PRECISION .
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- *> k when TRANS = 'N' or 'n', and is n otherwise.
- *> Before entry with TRANS = 'N' or 'n', the leading n by k
- *> part of the array A must contain the matrix A, otherwise
- *> the leading k by n part of the array A must contain the
- *> matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. When TRANS = 'N' or 'n'
- *> then LDA must be at least max( 1, n ), otherwise LDA must
- *> be at least max( 1, k ).
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is DOUBLE PRECISION.
- *> On entry, BETA specifies the scalar beta.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX*16 array of DIMENSION ( LDC, n ).
- *> Before entry with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array C must contain the upper
- *> triangular part of the hermitian matrix and the strictly
- *> lower triangular part of C is not referenced. On exit, the
- *> upper triangular part of the array C is overwritten by the
- *> upper triangular part of the updated matrix.
- *> Before entry with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array C must contain the lower
- *> triangular part of the hermitian matrix and the strictly
- *> upper triangular part of C is not referenced. On exit, the
- *> lower triangular part of the array C is overwritten by the
- *> lower triangular part of the updated matrix.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set, they are assumed to be zero, and on exit they
- *> are set to zero.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> On entry, LDC specifies the first dimension of C as declared
- *> in the calling (sub) program. LDC must be at least
- *> max( 1, n ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16_blas_level3
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 3 Blas routine.
- *>
- *> -- Written on 8-February-1989.
- *> Jack Dongarra, Argonne National Laboratory.
- *> Iain Duff, AERE Harwell.
- *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
- *> Sven Hammarling, Numerical Algorithms Group Ltd.
- *>
- *> -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
- *> Ed Anderson, Cray Research Inc.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
- *
- * -- Reference BLAS level3 routine (version 3.4.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA,BETA
- INTEGER K,LDA,LDC,N
- CHARACTER TRANS,UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A(LDA,*),C(LDC,*)
- * ..
- *
- * =====================================================================
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE,DCMPLX,DCONJG,MAX
- * ..
- * .. Local Scalars ..
- COMPLEX*16 TEMP
- DOUBLE PRECISION RTEMP
- INTEGER I,INFO,J,L,NROWA
- LOGICAL UPPER
- * ..
- * .. Parameters ..
- DOUBLE PRECISION ONE,ZERO
- PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
- * ..
- *
- * Test the input parameters.
- *
- IF (LSAME(TRANS,'N')) THEN
- NROWA = N
- ELSE
- NROWA = K
- END IF
- UPPER = LSAME(UPLO,'U')
- *
- INFO = 0
- IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
- INFO = 1
- ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
- + (.NOT.LSAME(TRANS,'C'))) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (K.LT.0) THEN
- INFO = 4
- ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
- INFO = 7
- ELSE IF (LDC.LT.MAX(1,N)) THEN
- INFO = 10
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZHERK ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
- + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
- *
- * And when alpha.eq.zero.
- *
- IF (ALPHA.EQ.ZERO) THEN
- IF (UPPER) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 20 J = 1,N
- DO 10 I = 1,J
- C(I,J) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40 J = 1,N
- DO 30 I = 1,J - 1
- C(I,J) = BETA*C(I,J)
- 30 CONTINUE
- C(J,J) = BETA*DBLE(C(J,J))
- 40 CONTINUE
- END IF
- ELSE
- IF (BETA.EQ.ZERO) THEN
- DO 60 J = 1,N
- DO 50 I = J,N
- C(I,J) = ZERO
- 50 CONTINUE
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- C(J,J) = BETA*DBLE(C(J,J))
- DO 70 I = J + 1,N
- C(I,J) = BETA*C(I,J)
- 70 CONTINUE
- 80 CONTINUE
- END IF
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form C := alpha*A*A**H + beta*C.
- *
- IF (UPPER) THEN
- DO 130 J = 1,N
- IF (BETA.EQ.ZERO) THEN
- DO 90 I = 1,J
- C(I,J) = ZERO
- 90 CONTINUE
- ELSE IF (BETA.NE.ONE) THEN
- DO 100 I = 1,J - 1
- C(I,J) = BETA*C(I,J)
- 100 CONTINUE
- C(J,J) = BETA*DBLE(C(J,J))
- ELSE
- C(J,J) = DBLE(C(J,J))
- END IF
- DO 120 L = 1,K
- IF (A(J,L).NE.DCMPLX(ZERO)) THEN
- TEMP = ALPHA*DCONJG(A(J,L))
- DO 110 I = 1,J - 1
- C(I,J) = C(I,J) + TEMP*A(I,L)
- 110 CONTINUE
- C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L))
- END IF
- 120 CONTINUE
- 130 CONTINUE
- ELSE
- DO 180 J = 1,N
- IF (BETA.EQ.ZERO) THEN
- DO 140 I = J,N
- C(I,J) = ZERO
- 140 CONTINUE
- ELSE IF (BETA.NE.ONE) THEN
- C(J,J) = BETA*DBLE(C(J,J))
- DO 150 I = J + 1,N
- C(I,J) = BETA*C(I,J)
- 150 CONTINUE
- ELSE
- C(J,J) = DBLE(C(J,J))
- END IF
- DO 170 L = 1,K
- IF (A(J,L).NE.DCMPLX(ZERO)) THEN
- TEMP = ALPHA*DCONJG(A(J,L))
- C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L))
- DO 160 I = J + 1,N
- C(I,J) = C(I,J) + TEMP*A(I,L)
- 160 CONTINUE
- END IF
- 170 CONTINUE
- 180 CONTINUE
- END IF
- ELSE
- *
- * Form C := alpha*A**H*A + beta*C.
- *
- IF (UPPER) THEN
- DO 220 J = 1,N
- DO 200 I = 1,J - 1
- TEMP = ZERO
- DO 190 L = 1,K
- TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
- 190 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 200 CONTINUE
- RTEMP = ZERO
- DO 210 L = 1,K
- RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
- 210 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(J,J) = ALPHA*RTEMP
- ELSE
- C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
- END IF
- 220 CONTINUE
- ELSE
- DO 260 J = 1,N
- RTEMP = ZERO
- DO 230 L = 1,K
- RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
- 230 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(J,J) = ALPHA*RTEMP
- ELSE
- C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
- END IF
- DO 250 I = J + 1,N
- TEMP = ZERO
- DO 240 L = 1,K
- TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
- 240 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = ALPHA*TEMP
- ELSE
- C(I,J) = ALPHA*TEMP + BETA*C(I,J)
- END IF
- 250 CONTINUE
- 260 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZHERK .
- *
- END
|