|
- SUBROUTINE SLAUU2F( UPLO, N, A, LDA, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.1) --
- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
- * November 2006
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- * SLAUU2 computes the product U * U' or L' * L, where the triangular
- * factor U or L is stored in the upper or lower triangular part of
- * the array A.
- *
- * If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
- * overwriting the factor U in A.
- * If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
- * overwriting the factor L in A.
- *
- * This is the unblocked form of the algorithm, calling Level 2 BLAS.
- *
- * Arguments
- * =========
- *
- * UPLO (input) CHARACTER*1
- * Specifies whether the triangular factor stored in the array A
- * is upper or lower triangular:
- * = 'U': Upper triangular
- * = 'L': Lower triangular
- *
- * N (input) INTEGER
- * The order of the triangular factor U or L. N >= 0.
- *
- * A (input/output) REAL array, dimension (LDA,N)
- * On entry, the triangular factor U or L.
- * On exit, if UPLO = 'U', the upper triangle of A is
- * overwritten with the upper triangle of the product U * U';
- * if UPLO = 'L', the lower triangle of A is overwritten with
- * the lower triangle of the product L' * L.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,N).
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -k, the k-th argument had an illegal value
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I
- REAL AII
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SDOT
- EXTERNAL LSAME, SDOT
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLAUU2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Compute the product U * U'.
- *
- DO 10 I = 1, N
- AII = A( I, I )
- IF( I.LT.N ) THEN
- A( I, I ) = SDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA )
- CALL SGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 )
- ELSE
- CALL SSCAL( I, AII, A( 1, I ), 1 )
- END IF
- 10 CONTINUE
- *
- ELSE
- *
- * Compute the product L' * L.
- *
- DO 20 I = 1, N
- AII = A( I, I )
- IF( I.LT.N ) THEN
- A( I, I ) = SDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 )
- CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
- $ A( I+1, I ), 1, AII, A( I, 1 ), LDA )
- ELSE
- CALL SSCAL( I, AII, A( I, 1 ), LDA )
- END IF
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of SLAUU2
- *
- END
|