|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__9 = 9;
- static integer c__0 = 0;
- static real c_b15 = 1.f;
- static integer c__1 = 1;
- static real c_b29 = 0.f;
-
- /* > \brief \b SBDSDC */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SBDSDC + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsdc.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsdc.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsdc.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, */
- /* WORK, IWORK, INFO ) */
-
- /* CHARACTER COMPQ, UPLO */
- /* INTEGER INFO, LDU, LDVT, N */
- /* INTEGER IQ( * ), IWORK( * ) */
- /* REAL D( * ), E( * ), Q( * ), U( LDU, * ), */
- /* $ VT( LDVT, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SBDSDC computes the singular value decomposition (SVD) of a real */
- /* > N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
- /* > using a divide and conquer method, where S is a diagonal matrix */
- /* > with non-negative diagonal elements (the singular values of B), and */
- /* > U and VT are orthogonal matrices of left and right singular vectors, */
- /* > respectively. SBDSDC can be used to compute all singular values, */
- /* > and optionally, singular vectors or singular vectors in compact form. */
- /* > */
- /* > This code makes very mild assumptions about floating point */
- /* > arithmetic. It will work on machines with a guard digit in */
- /* > add/subtract, or on those binary machines without guard digits */
- /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
- /* > It could conceivably fail on hexadecimal or decimal machines */
- /* > without guard digits, but we know of none. See SLASD3 for details. */
- /* > */
- /* > The code currently calls SLASDQ if singular values only are desired. */
- /* > However, it can be slightly modified to compute singular values */
- /* > using the divide and conquer method. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': B is upper bidiagonal. */
- /* > = 'L': B is lower bidiagonal. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPQ */
- /* > \verbatim */
- /* > COMPQ is CHARACTER*1 */
- /* > Specifies whether singular vectors are to be computed */
- /* > as follows: */
- /* > = 'N': Compute singular values only; */
- /* > = 'P': Compute singular values and compute singular */
- /* > vectors in compact form; */
- /* > = 'I': Compute singular values and singular vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (N) */
- /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
- /* > On exit, if INFO=0, the singular values of B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (N-1) */
- /* > On entry, the elements of E contain the offdiagonal */
- /* > elements of the bidiagonal matrix whose SVD is desired. */
- /* > On exit, E has been destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is REAL array, dimension (LDU,N) */
- /* > If COMPQ = 'I', then: */
- /* > On exit, if INFO = 0, U contains the left singular vectors */
- /* > of the bidiagonal matrix. */
- /* > For other values of COMPQ, U is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= 1. */
- /* > If singular vectors are desired, then LDU >= f2cmax( 1, N ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VT */
- /* > \verbatim */
- /* > VT is REAL array, dimension (LDVT,N) */
- /* > If COMPQ = 'I', then: */
- /* > On exit, if INFO = 0, VT**T contains the right singular */
- /* > vectors of the bidiagonal matrix. */
- /* > For other values of COMPQ, VT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT */
- /* > \verbatim */
- /* > LDVT is INTEGER */
- /* > The leading dimension of the array VT. LDVT >= 1. */
- /* > If singular vectors are desired, then LDVT >= f2cmax( 1, N ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Q */
- /* > \verbatim */
- /* > Q is REAL array, dimension (LDQ) */
- /* > If COMPQ = 'P', then: */
- /* > On exit, if INFO = 0, Q and IQ contain the left */
- /* > and right singular vectors in a compact form, */
- /* > requiring O(N log N) space instead of 2*N**2. */
- /* > In particular, Q contains all the REAL data in */
- /* > LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
- /* > words of memory, where SMLSIZ is returned by ILAENV and */
- /* > is equal to the maximum size of the subproblems at the */
- /* > bottom of the computation tree (usually about 25). */
- /* > For other values of COMPQ, Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IQ */
- /* > \verbatim */
- /* > IQ is INTEGER array, dimension (LDIQ) */
- /* > If COMPQ = 'P', then: */
- /* > On exit, if INFO = 0, Q and IQ contain the left */
- /* > and right singular vectors in a compact form, */
- /* > requiring O(N log N) space instead of 2*N**2. */
- /* > In particular, IQ contains all INTEGER data in */
- /* > LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
- /* > words of memory, where SMLSIZ is returned by ILAENV and */
- /* > is equal to the maximum size of the subproblems at the */
- /* > bottom of the computation tree (usually about 25). */
- /* > For other values of COMPQ, IQ is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > If COMPQ = 'N' then LWORK >= (4 * N). */
- /* > If COMPQ = 'P' then LWORK >= (6 * N). */
- /* > If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (8*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: The algorithm failed to compute a singular value. */
- /* > The update process of divide and conquer failed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Huan Ren, Computer Science Division, University of */
- /* > California at Berkeley, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int sbdsdc_(char *uplo, char *compq, integer *n, real *d__,
- real *e, real *u, integer *ldu, real *vt, integer *ldvt, real *q,
- integer *iq, real *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
- real r__1;
-
- /* Local variables */
- integer difl, difr, ierr, perm, mlvl, sqre, i__, j, k;
- real p, r__;
- integer z__;
- extern logical lsame_(char *, char *);
- integer poles;
- extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
- integer *, real *, real *, real *, integer *);
- integer iuplo, nsize, start;
- extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
- integer *), sswap_(integer *, real *, integer *, real *, integer *
- ), slasd0_(integer *, integer *, real *, real *, real *, integer *
- , real *, integer *, integer *, integer *, real *, integer *);
- integer ic, ii, kk;
- real cs;
- integer is, iu;
- real sn;
- extern real slamch_(char *);
- extern /* Subroutine */ int slasda_(integer *, integer *, integer *,
- integer *, real *, real *, real *, integer *, real *, integer *,
- real *, real *, real *, real *, integer *, integer *, integer *,
- integer *, real *, real *, real *, real *, integer *, integer *),
- xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *);
- integer givcol;
- extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, real *, real *, real *, integer *, real *
- , integer *, real *, integer *, real *, integer *);
- integer icompq;
- extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *,
- real *, real *, integer *), slartg_(real *, real *, real *
- , real *, real *);
- real orgnrm;
- integer givnum;
- extern real slanst_(char *, integer *, real *, real *);
- integer givptr, nm1, qstart, smlsiz, wstart, smlszp;
- real eps;
- integer ivt;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
- /* Changed dimension statement in comment describing E from (N) to */
- /* (N-1). Sven, 17 Feb 05. */
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --e;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --q;
- --iq;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- iuplo = 0;
- if (lsame_(uplo, "U")) {
- iuplo = 1;
- }
- if (lsame_(uplo, "L")) {
- iuplo = 2;
- }
- if (lsame_(compq, "N")) {
- icompq = 0;
- } else if (lsame_(compq, "P")) {
- icompq = 1;
- } else if (lsame_(compq, "I")) {
- icompq = 2;
- } else {
- icompq = -1;
- }
- if (iuplo == 0) {
- *info = -1;
- } else if (icompq < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
- *info = -7;
- } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SBDSDC", &i__1, (ftnlen)6);
- return 0;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
- smlsiz = ilaenv_(&c__9, "SBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
- ftnlen)6, (ftnlen)1);
- if (*n == 1) {
- if (icompq == 1) {
- q[1] = r_sign(&c_b15, &d__[1]);
- q[smlsiz * *n + 1] = 1.f;
- } else if (icompq == 2) {
- u[u_dim1 + 1] = r_sign(&c_b15, &d__[1]);
- vt[vt_dim1 + 1] = 1.f;
- }
- d__[1] = abs(d__[1]);
- return 0;
- }
- nm1 = *n - 1;
-
- /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
- /* by applying Givens rotations on the left */
-
- wstart = 1;
- qstart = 3;
- if (icompq == 1) {
- scopy_(n, &d__[1], &c__1, &q[1], &c__1);
- i__1 = *n - 1;
- scopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
- }
- if (iuplo == 2) {
- qstart = 5;
- if (icompq == 2) {
- wstart = (*n << 1) - 1;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (icompq == 1) {
- q[i__ + (*n << 1)] = cs;
- q[i__ + *n * 3] = sn;
- } else if (icompq == 2) {
- work[i__] = cs;
- work[nm1 + i__] = -sn;
- }
- /* L10: */
- }
- }
-
- /* If ICOMPQ = 0, use SLASDQ to compute the singular values. */
-
- if (icompq == 0) {
- /* Ignore WSTART, instead using WORK( 1 ), since the two vectors */
- /* for CS and -SN above are added only if ICOMPQ == 2, */
- /* and adding them exceeds documented WORK size of 4*n. */
- slasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- 1], info);
- goto L40;
- }
-
- /* If N is smaller than the minimum divide size SMLSIZ, then solve */
- /* the problem with another solver. */
-
- if (*n <= smlsiz) {
- if (icompq == 2) {
- slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
- , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- wstart], info);
- } else if (icompq == 1) {
- iu = 1;
- ivt = iu + *n;
- slaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
- slaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
- slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
- qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
- iu + (qstart - 1) * *n], n, &work[wstart], info);
- }
- goto L40;
- }
-
- if (icompq == 2) {
- slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- }
-
- /* Scale. */
-
- orgnrm = slanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.f) {
- return 0;
- }
- slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
- slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
- ierr);
-
- eps = slamch_("Epsilon");
-
- mlvl = (integer) (log((real) (*n) / (real) (smlsiz + 1)) / log(2.f)) + 1;
- smlszp = smlsiz + 1;
-
- if (icompq == 1) {
- iu = 1;
- ivt = smlsiz + 1;
- difl = ivt + smlszp;
- difr = difl + mlvl;
- z__ = difr + (mlvl << 1);
- ic = z__ + mlvl;
- is = ic + 1;
- poles = is + 1;
- givnum = poles + (mlvl << 1);
-
- k = 1;
- givptr = 2;
- perm = 3;
- givcol = perm + mlvl;
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((r__1 = d__[i__], abs(r__1)) < eps) {
- d__[i__] = r_sign(&eps, &d__[i__]);
- }
- /* L20: */
- }
-
- start = 1;
- sqre = 0;
-
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
-
- /* Subproblem found. First determine its size and then */
- /* apply divide and conquer on it. */
-
- if (i__ < nm1) {
-
- /* A subproblem with E(I) small for I < NM1. */
-
- nsize = i__ - start + 1;
- } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
-
- /* A subproblem with E(NM1) not too small but I = NM1. */
-
- nsize = *n - start + 1;
- } else {
-
- /* A subproblem with E(NM1) small. This implies an */
- /* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
- /* first. */
-
- nsize = i__ - start + 1;
- if (icompq == 2) {
- u[*n + *n * u_dim1] = r_sign(&c_b15, &d__[*n]);
- vt[*n + *n * vt_dim1] = 1.f;
- } else if (icompq == 1) {
- q[*n + (qstart - 1) * *n] = r_sign(&c_b15, &d__[*n]);
- q[*n + (smlsiz + qstart - 1) * *n] = 1.f;
- }
- d__[*n] = (r__1 = d__[*n], abs(r__1));
- }
- if (icompq == 2) {
- slasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
- start * u_dim1], ldu, &vt[start + start * vt_dim1],
- ldvt, &smlsiz, &iwork[1], &work[wstart], info);
- } else {
- slasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
- start], &q[start + (iu + qstart - 2) * *n], n, &q[
- start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
- &q[start + (difl + qstart - 2) * *n], &q[start + (
- difr + qstart - 2) * *n], &q[start + (z__ + qstart -
- 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
- start + givptr * *n], &iq[start + givcol * *n], n, &
- iq[start + perm * *n], &q[start + (givnum + qstart -
- 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
- start + (is + qstart - 2) * *n], &work[wstart], &
- iwork[1], info);
- }
- if (*info != 0) {
- return 0;
- }
- start = i__ + 1;
- }
- /* L30: */
- }
-
- /* Unscale */
-
- slascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
- L40:
-
- /* Use Selection Sort to minimize swaps of singular vectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- kk = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] > p) {
- kk = j;
- p = d__[j];
- }
- /* L50: */
- }
- if (kk != i__) {
- d__[kk] = d__[i__];
- d__[i__] = p;
- if (icompq == 1) {
- iq[i__] = kk;
- } else if (icompq == 2) {
- sswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
- c__1);
- sswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
- }
- } else if (icompq == 1) {
- iq[i__] = i__;
- }
- /* L60: */
- }
-
- /* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
-
- if (icompq == 1) {
- if (iuplo == 1) {
- iq[*n] = 1;
- } else {
- iq[*n] = 0;
- }
- }
-
- /* If B is lower bidiagonal, update U by those Givens rotations */
- /* which rotated B to be upper bidiagonal */
-
- if (iuplo == 2 && icompq == 2) {
- slasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
- }
-
- return 0;
-
- /* End of SBDSDC */
-
- } /* sbdsdc_ */
|