|
- C> \brief \b CPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPOTRF ( UPLO, N, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- C>\details \b Purpose:
- C>\verbatim
- C>
- C> CPOTRF computes the Cholesky factorization of a real Hermitian
- C> positive definite matrix A.
- C>
- C> The factorization has the form
- C> A = U**H * U, if UPLO = 'U', or
- C> A = L * L**H, if UPLO = 'L',
- C> where U is an upper triangular matrix and L is lower triangular.
- C>
- C> This is the right looking block version of the algorithm, calling Level 3 BLAS.
- C>
- C>\endverbatim
- *
- * Arguments:
- * ==========
- *
- C> \param[in] UPLO
- C> \verbatim
- C> UPLO is CHARACTER*1
- C> = 'U': Upper triangle of A is stored;
- C> = 'L': Lower triangle of A is stored.
- C> \endverbatim
- C>
- C> \param[in] N
- C> \verbatim
- C> N is INTEGER
- C> The order of the matrix A. N >= 0.
- C> \endverbatim
- C>
- C> \param[in,out] A
- C> \verbatim
- C> A is COMPLEX array, dimension (LDA,N)
- C> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- C> N-by-N upper triangular part of A contains the upper
- C> triangular part of the matrix A, and the strictly lower
- C> triangular part of A is not referenced. If UPLO = 'L', the
- C> leading N-by-N lower triangular part of A contains the lower
- C> triangular part of the matrix A, and the strictly upper
- C> triangular part of A is not referenced.
- C> \endverbatim
- C> \verbatim
- C> On exit, if INFO = 0, the factor U or L from the Cholesky
- C> factorization A = U**H*U or A = L*L**H.
- C> \endverbatim
- C>
- C> \param[in] LDA
- C> \verbatim
- C> LDA is INTEGER
- C> The leading dimension of the array A. LDA >= max(1,N).
- C> \endverbatim
- C>
- C> \param[out] INFO
- C> \verbatim
- C> INFO is INTEGER
- C> = 0: successful exit
- C> < 0: if INFO = -i, the i-th argument had an illegal value
- C> > 0: if INFO = i, the leading minor of order i is not
- C> positive definite, and the factorization could not be
- C> completed.
- C> \endverbatim
- C>
- *
- * Authors:
- * ========
- *
- C> \author Univ. of Tennessee
- C> \author Univ. of California Berkeley
- C> \author Univ. of Colorado Denver
- C> \author NAG Ltd.
- *
- C> \date November 2011
- *
- C> \ingroup variantsPOcomputational
- *
- * =====================================================================
- SUBROUTINE CPOTRF ( UPLO, N, A, LDA, INFO )
- *
- * -- LAPACK computational routine (version 3.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- COMPLEX CONE
- PARAMETER ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, JB, NB
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CPOTF2, CHERK, CTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CPOTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'CPOTRF', UPLO, N, -1, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.N ) THEN
- *
- * Use unblocked code.
- *
- CALL CPOTF2( UPLO, N, A, LDA, INFO )
- ELSE
- *
- * Use blocked code.
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization A = U'*U.
- *
- DO 10 J = 1, N, NB
- *
- * Update and factorize the current diagonal block and test
- * for non-positive-definiteness.
- *
- JB = MIN( NB, N-J+1 )
-
- CALL CPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
-
- IF( INFO.NE.0 )
- $ GO TO 30
-
- IF( J+JB.LE.N ) THEN
- *
- * Updating the trailing submatrix.
- *
- CALL CTRSM( 'Left', 'Upper', 'Conjugate Transpose',
- $ 'Non-unit', JB, N-J-JB+1, CONE, A( J, J ),
- $ LDA, A( J, J+JB ), LDA )
- CALL CHERK( 'Upper', 'Conjugate transpose', N-J-JB+1,
- $ JB, -ONE, A( J, J+JB ), LDA,
- $ ONE, A( J+JB, J+JB ), LDA )
- END IF
- 10 CONTINUE
- *
- ELSE
- *
- * Compute the Cholesky factorization A = L*L'.
- *
- DO 20 J = 1, N, NB
- *
- * Update and factorize the current diagonal block and test
- * for non-positive-definiteness.
- *
- JB = MIN( NB, N-J+1 )
-
- CALL CPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
-
- IF( INFO.NE.0 )
- $ GO TO 30
-
- IF( J+JB.LE.N ) THEN
- *
- * Updating the trailing submatrix.
- *
- CALL CTRSM( 'Right', 'Lower', 'Conjugate Transpose',
- $ 'Non-unit', N-J-JB+1, JB, CONE, A( J, J ),
- $ LDA, A( J+JB, J ), LDA )
-
- CALL CHERK( 'Lower', 'No Transpose', N-J-JB+1, JB,
- $ -ONE, A( J+JB, J ), LDA,
- $ ONE, A( J+JB, J+JB ), LDA )
- END IF
- 20 CONTINUE
- END IF
- END IF
- GO TO 40
- *
- 30 CONTINUE
- INFO = INFO + J - 1
- *
- 40 CONTINUE
- RETURN
- *
- * End of CPOTRF
- *
- END
|