|
- /*****************************************************************************
- Copyright (c) 2022, Intel Corp.
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors
- may be used to endorse or promote products derived from this software
- without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGE.
- ******************************************************************************
- * Contents: Native C interface to LAPACK utility function
- * Author: Simon Märtens
- *****************************************************************************/
-
- #include "lapacke_utils.h"
-
- /*****************************************************************************
- Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal
- matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses
- the diagonal which shall be considered and `uplo` tells us whether we use the
- upper or lower part of the matrix with respect to the chosen diagonal.
-
- Diagonals 'F' (front / forward) and 'B' (back / backward):
-
- A = ( F ) A = ( F B )
- ( F ) ( F B )
- ( B F ) ( F B )
- ( B )
- ( B )
-
- direct = 'F', uplo = 'L':
-
- A = ( * ) A = ( * )
- ( * * ) ( * * )
- ( * * * ) ( * * * )
- ( * * * )
- ( * * * )
-
- direct = 'F', uplo = 'U':
-
- A = ( * * * ) A = ( * * * * * )
- ( * * ) ( * * * * )
- ( * ) ( * * * )
- ( )
- ( )
-
- direct = 'B', uplo = 'L':
-
- A = ( ) A = ( * * * )
- ( ) ( * * * * )
- ( * ) ( * * * * * )
- ( * * )
- ( * * * )
-
- direct = 'B', uplo = 'U':
-
- A = ( * * * ) A = ( * * * )
- ( * * * ) ( * * )
- ( * * * ) ( * )
- ( * * )
- ( * )
-
- *****************************************************************************/
-
- lapack_logical LAPACKE_ztz_nancheck( int matrix_layout, char direct, char uplo,
- char diag, lapack_int m, lapack_int n,
- const lapack_complex_double *a,
- lapack_int lda )
- {
- lapack_logical colmaj, front, lower, unit;
-
- if( a == NULL ) return (lapack_logical) 0;
-
- colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
- front = LAPACKE_lsame( direct, 'f' );
- lower = LAPACKE_lsame( uplo, 'l' );
- unit = LAPACKE_lsame( diag, 'u' );
-
- if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
- ( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
- ( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
- ( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
- /* Just exit if any of input parameters are wrong */
- return (lapack_logical) 0;
- }
-
- /* Initial offsets and sizes of triangular and rectangular parts */
- lapack_int tri_offset = 0;
- lapack_int tri_n = MIN(m,n);
- lapack_int rect_offset = -1;
- lapack_int rect_m = ( m > n ) ? m - n : m;
- lapack_int rect_n = ( n > m ) ? n - m : n;
-
- /* Fix offsets depending on the shape of the matrix */
- if( front ) {
- if( lower && m > n ) {
- rect_offset = tri_n * ( !colmaj ? lda : 1 );
- } else if( !lower && n > m ) {
- rect_offset = tri_n * ( colmaj ? lda : 1 );
- }
- } else {
- if( m > n ) {
- tri_offset = rect_m * ( !colmaj ? lda : 1 );
- if( !lower ) {
- rect_offset = 0;
- }
- } else if( n > m ) {
- tri_offset = rect_n * ( colmaj ? lda : 1 );
- if( lower ) {
- rect_offset = 0;
- }
- }
- }
-
- /* Check rectangular part */
- if( rect_offset >= 0 ) {
- if( LAPACKE_zge_nancheck( matrix_layout, rect_m, rect_n,
- &a[rect_offset], lda) ) {
- return (lapack_logical) 1;
- }
- }
-
- /* Check triangular part */
- return LAPACKE_ztr_nancheck( matrix_layout, uplo, diag, tri_n,
- &a[tri_offset], lda );
- }
|