|
- /*********************************************************************/
- /* Copyright 2009, 2010 The University of Texas at Austin. */
- /* Copyright 2023, 2025 The OpenBLAS Project. */
- /* All rights reserved. */
- /* */
- /* Redistribution and use in source and binary forms, with or */
- /* without modification, are permitted provided that the following */
- /* conditions are met: */
- /* */
- /* 1. Redistributions of source code must retain the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer. */
- /* */
- /* 2. Redistributions in binary form must reproduce the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer in the documentation and/or other materials */
- /* provided with the distribution. */
- /* */
- /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
- /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
- /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
- /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
- /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
- /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
- /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
- /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
- /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
- /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
- /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
- /* POSSIBILITY OF SUCH DAMAGE. */
- /* */
- /* The views and conclusions contained in the software and */
- /* documentation are those of the authors and should not be */
- /* interpreted as representing official policies, either expressed */
- /* or implied, of The University of Texas at Austin. */
- /*********************************************************************/
-
- #ifndef CACHE_LINE_SIZE
- #define CACHE_LINE_SIZE 8
- #endif
-
- #ifndef DIVIDE_RATE
- #define DIVIDE_RATE 2
- #endif
-
- #ifndef GEMM_PREFERED_SIZE
- #define GEMM_PREFERED_SIZE 1
- #endif
-
- //The array of job_t may overflow the stack.
- //Instead, use malloc to alloc job_t.
- #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
- #define USE_ALLOC_HEAP
- #endif
-
- #ifndef GEMM_LOCAL
- #if defined(NN)
- #define GEMM_LOCAL GEMM_NN
- #elif defined(NT)
- #define GEMM_LOCAL GEMM_NT
- #elif defined(NR)
- #define GEMM_LOCAL GEMM_NR
- #elif defined(NC)
- #define GEMM_LOCAL GEMM_NC
- #elif defined(TN)
- #define GEMM_LOCAL GEMM_TN
- #elif defined(TT)
- #define GEMM_LOCAL GEMM_TT
- #elif defined(TR)
- #define GEMM_LOCAL GEMM_TR
- #elif defined(TC)
- #define GEMM_LOCAL GEMM_TC
- #elif defined(RN)
- #define GEMM_LOCAL GEMM_RN
- #elif defined(RT)
- #define GEMM_LOCAL GEMM_RT
- #elif defined(RR)
- #define GEMM_LOCAL GEMM_RR
- #elif defined(RC)
- #define GEMM_LOCAL GEMM_RC
- #elif defined(CN)
- #define GEMM_LOCAL GEMM_CN
- #elif defined(CT)
- #define GEMM_LOCAL GEMM_CT
- #elif defined(CR)
- #define GEMM_LOCAL GEMM_CR
- #elif defined(CC)
- #define GEMM_LOCAL GEMM_CC
- #endif
- #endif
-
- typedef struct {
- volatile
- BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
- } job_t;
-
-
- #ifndef BETA_OPERATION
- #ifndef COMPLEX
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #else
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], BETA[1], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef ICOPY_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef OCOPY_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef KERNEL_FUNC
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- #define KERNEL_FUNC GEMM_KERNEL_N
- #endif
- #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
- #define KERNEL_FUNC GEMM_KERNEL_L
- #endif
- #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
- #define KERNEL_FUNC GEMM_KERNEL_R
- #endif
- #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
- #define KERNEL_FUNC GEMM_KERNEL_B
- #endif
- #endif
-
- #ifndef KERNEL_OPERATION
- #ifndef COMPLEX
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #else
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef FUSED_KERNEL_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
-
- #endif
- #else
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
- #endif
-
- #ifndef A
- #define A args -> a
- #endif
- #ifndef LDA
- #define LDA args -> lda
- #endif
- #ifndef B
- #define B args -> b
- #endif
- #ifndef LDB
- #define LDB args -> ldb
- #endif
- #ifndef C
- #define C args -> c
- #endif
- #ifndef LDC
- #define LDC args -> ldc
- #endif
- #ifndef M
- #define M args -> m
- #endif
- #ifndef N
- #define N args -> n
- #endif
- #ifndef K
- #define K args -> k
- #endif
-
- #ifdef TIMING
- #define START_RPCC() rpcc_counter = rpcc()
- #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
- #else
- #define START_RPCC()
- #define STOP_RPCC(COUNTER)
- #endif
-
- #if defined(BUILD_BFLOAT16)
- #if defined(DYNAMIC_ARCH)
- #if defined(BGEMM)
- #define BFLOAT16_ALIGN_K gotoblas->bgemm_align_k
- #else
- #define BFLOAT16_ALIGN_K gotoblas->sbgemm_align_k
- #endif
- #else
- #if defined(BGEMM)
- #define BFLOAT16_ALIGN_K BGEMM_ALIGN_K
- #else
- #define BFLOAT16_ALIGN_K SBGEMM_ALIGN_K
- #endif
- #endif
- #endif
-
- static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, IFLOAT *sa, IFLOAT *sb, BLASLONG mypos){
-
- IFLOAT *buffer[DIVIDE_RATE];
-
- BLASLONG k, lda, ldb, ldc;
- BLASLONG m_from, m_to, n_from, n_to;
-
- FLOAT *alpha, *beta;
- IFLOAT *a, *b;
- FLOAT *c;
- job_t *job = (job_t *)args -> common;
-
- BLASLONG nthreads_m;
- BLASLONG mypos_m, mypos_n;
- BLASLONG divide_rate = DIVIDE_RATE;
-
- BLASLONG is, js, ls, bufferside, jjs;
- BLASLONG min_i, min_l, div_n, min_jj;
-
- BLASLONG i, current;
- BLASLONG l1stride;
-
- #ifdef TIMING
- BLASULONG rpcc_counter;
- BLASULONG copy_A = 0;
- BLASULONG copy_B = 0;
- BLASULONG kernel = 0;
- BLASULONG waiting1 = 0;
- BLASULONG waiting2 = 0;
- BLASULONG waiting3 = 0;
- BLASULONG waiting6[MAX_CPU_NUMBER];
- BLASULONG ops = 0;
-
- for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
- #endif
-
- k = K;
-
- a = (IFLOAT *)A;
- b = (IFLOAT *)B;
- c = (FLOAT *)C;
-
- lda = LDA;
- ldb = LDB;
- ldc = LDC;
-
- alpha = (FLOAT *)args -> alpha;
- beta = (FLOAT *)args -> beta;
-
- /* Disable divide_rate when N of all threads are less than to DIVIDE_LIMIT */
- #ifdef DIVIDE_LIMIT
- if (N < DIVIDE_LIMIT) divide_rate = 1;
- #endif
-
- /* Initialize 2D CPU distribution */
- nthreads_m = args -> nthreads;
- if (range_m) {
- nthreads_m = range_m[-1];
- }
- mypos_n = blas_quickdivide(mypos, nthreads_m); /* mypos_n = mypos / nthreads_m */
- mypos_m = mypos - mypos_n * nthreads_m; /* mypos_m = mypos % nthreads_m */
-
- /* Initialize m and n */
- m_from = 0;
- m_to = M;
- if (range_m) {
- m_from = range_m[mypos_m + 0];
- m_to = range_m[mypos_m + 1];
- }
- n_from = 0;
- n_to = N;
- if (range_n) {
- n_from = range_n[mypos + 0];
- n_to = range_n[mypos + 1];
- }
-
- /* Multiply C by beta if needed */
- if (beta) {
- #ifndef COMPLEX
- if (beta[0] != ONE)
- #else
- if ((beta[0] != ONE) || (beta[1] != ZERO))
- #endif
- BETA_OPERATION(m_from, m_to, range_n[mypos_n * nthreads_m], range_n[(mypos_n + 1) * nthreads_m], beta, c, ldc);
- }
-
- /* Return early if no more computation is needed */
- if ((k == 0) || (alpha == NULL)) return 0;
- if (alpha[0] == ZERO
- #ifdef COMPLEX
- && alpha[1] == ZERO
- #endif
- ) return 0;
-
- /* Initialize workspace for local region of B */
- div_n = (n_to - n_from + divide_rate - 1) / divide_rate;
- buffer[0] = sb;
- for (i = 1; i < divide_rate; i++) {
- buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE;
- }
-
- /* Iterate through steps of k */
- for(ls = 0; ls < k; ls += min_l){
-
- /* Determine step size in k */
- min_l = k - ls;
- if (min_l >= GEMM_Q * 2) {
- min_l = GEMM_Q;
- } else {
- if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
- }
-
- BLASLONG pad_min_l = min_l;
-
- #if defined(BFLOAT16)
- pad_min_l = (min_l + BFLOAT16_ALIGN_K - 1) & ~(BFLOAT16_ALIGN_K - 1);
- #endif
-
- /* Determine step size in m
- * Note: We are currently on the first step in m
- */
- l1stride = 1;
- min_i = m_to - m_from;
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else {
- if (min_i > GEMM_P) {
- min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- } else {
- if (args -> nthreads == 1) l1stride = 0;
- }
- }
-
- /* Copy local region of A into workspace */
- START_RPCC();
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
- STOP_RPCC(copy_A);
-
- /* Copy local region of B into workspace and apply kernel */
- div_n = (n_to - n_from + divide_rate - 1) / divide_rate;
- for (js = n_from, bufferside = 0; js < n_to; js += div_n, bufferside ++) {
-
- /* Make sure if no one is using workspace */
- START_RPCC();
- for (i = 0; i < args -> nthreads; i++)
- while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
- STOP_RPCC(waiting1);
- MB;
-
- #if defined(FUSED_GEMM) && !defined(TIMING)
-
- /* Fused operation to copy region of B into workspace and apply kernel */
- FUSED_KERNEL_OPERATION(min_i, MIN(n_to, js + div_n) - js, min_l, alpha,
- sa, buffer[bufferside], b, ldb, c, ldc, m_from, js, ls);
-
- #else
-
- /* Split local region of B into parts */
- for(jjs = js; jjs < MIN(n_to, js + div_n); jjs += min_jj){
- min_jj = MIN(n_to, js + div_n) - jjs;
- #if defined(SKYLAKEX) || defined(COOPERLAKE) || defined(SAPPHIRERAPIDS)
- /* the current AVX512 s/d/c/z GEMM kernel requires n>=6*GEMM_UNROLL_N to achieve the best performance */
- if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
- #else
- if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
- else
- /*
- if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
- else
- */
- if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
- #endif
- /* Copy part of local region of B into workspace */
- START_RPCC();
- OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
- buffer[bufferside] + pad_min_l * (jjs - js) * COMPSIZE * l1stride);
- STOP_RPCC(copy_B);
-
- /* Apply kernel with local region of A and part of local region of B */
- START_RPCC();
- KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
- sa, buffer[bufferside] + pad_min_l * (jjs - js) * COMPSIZE * l1stride,
- c, ldc, m_from, jjs);
- STOP_RPCC(kernel);
-
- #ifdef TIMING
- ops += 2 * min_i * min_jj * min_l;
- #endif
-
- }
- #endif
-
- WMB;
- /* Set flag so other threads can access local region of B */
- for (i = mypos_n * nthreads_m; i < (mypos_n + 1) * nthreads_m; i++)
- job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
- }
-
- /* Get regions of B from other threads and apply kernel */
- current = mypos;
- do {
-
- /* This thread accesses regions of B from threads in the range
- * [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
- current ++;
- if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
-
- /* Split other region of B into parts */
- div_n = (range_n[current + 1] - range_n[current] + divide_rate - 1) / divide_rate;
- for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
- if (current != mypos) {
-
- /* Wait until other region of B is initialized */
- START_RPCC();
- while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
- STOP_RPCC(waiting2);
- MB;
-
- /* Apply kernel with local region of A and part of other region of B */
- START_RPCC();
- KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
- sa, (IFLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
- c, ldc, m_from, js);
- STOP_RPCC(kernel);
-
- #ifdef TIMING
- ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
- #endif
- }
-
- /* Clear synchronization flag if this thread is done with other region of B */
- if (m_to - m_from == min_i) {
- WMB;
- job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
- }
- }
- } while (current != mypos);
-
- /* Iterate through steps of m
- * Note: First step has already been finished */
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else
- if (min_i > GEMM_P) {
- min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- }
-
- /* Copy local region of A into workspace */
- START_RPCC();
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
- STOP_RPCC(copy_A);
-
- /* Get regions of B and apply kernel */
- current = mypos;
- do {
-
- /* Split region of B into parts and apply kernel */
- div_n = (range_n[current + 1] - range_n[current] + divide_rate - 1) / divide_rate;
- for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
-
- /* Apply kernel with local region of A and part of region of B */
- START_RPCC();
- KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
- sa, (IFLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
- c, ldc, is, js);
- STOP_RPCC(kernel);
-
- #ifdef TIMING
- ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
- #endif
-
- /* Clear synchronization flag if this thread is done with region of B */
- if (is + min_i >= m_to) {
- WMB;
- job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
- }
- }
-
- /* This thread accesses regions of B from threads in the range
- * [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
- current ++;
- if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
-
- } while (current != mypos);
-
- }
-
- }
-
- /* Wait until all other threads are done with local region of B */
- START_RPCC();
- for (i = 0; i < args -> nthreads; i++) {
- for (js = 0; js < divide_rate; js++) {
- while (job[mypos].working[i][CACHE_LINE_SIZE * js] ) {YIELDING;};
- }
- }
- STOP_RPCC(waiting3);
- MB;
-
- #ifdef TIMING
- BLASLONG waiting = waiting1 + waiting2 + waiting3;
- BLASLONG total = copy_A + copy_B + kernel + waiting;
-
- fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
- mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
- (double)waiting1 /(double)total * 100.,
- (double)waiting2 /(double)total * 100.,
- (double)waiting3 /(double)total * 100.,
- (double)ops/(double)kernel / 4. * 100.);
- fprintf(stderr, "\n");
- #endif
-
- return 0;
- }
-
- static int round_up(int remainder, int width, int multiple)
- {
- if (multiple > remainder || width <= multiple)
- return width;
- width = (width + multiple - 1) / multiple;
- width = width * multiple;
- return width;
- }
-
-
- static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
- *range_n, IFLOAT *sa, IFLOAT *sb,
- BLASLONG nthreads_m, BLASLONG nthreads_n) {
-
- #ifdef USE_OPENMP
- static omp_lock_t level3_lock, critical_section_lock;
- static volatile BLASULONG init_lock = 0, omp_lock_initialized = 0,
- parallel_section_left = MAX_PARALLEL_NUMBER;
-
- // Lock initialization; Todo : Maybe this part can be moved to blas_init() in blas_server_omp.c
- while(omp_lock_initialized == 0)
- {
- blas_lock(&init_lock);
- {
- if(omp_lock_initialized == 0)
- {
- omp_init_lock(&level3_lock);
- omp_init_lock(&critical_section_lock);
- omp_lock_initialized = 1;
- WMB;
- }
- blas_unlock(&init_lock);
- }
- }
- #elif defined(OS_WINDOWS)
- CRITICAL_SECTION level3_lock;
- InitializeCriticalSection((PCRITICAL_SECTION)&level3_lock);
- #else
- static pthread_mutex_t level3_lock = PTHREAD_MUTEX_INITIALIZER;
- static pthread_cond_t level3_wakeup = PTHREAD_COND_INITIALIZER;
- volatile static BLASLONG CPU_AVAILABLE = MAX_CPU_NUMBER;
- #endif
-
- blas_arg_t newarg;
-
- #ifndef USE_ALLOC_HEAP
- job_t job[MAX_CPU_NUMBER];
- #else
- job_t * job = NULL;
- #endif
-
- blas_queue_t queue[MAX_CPU_NUMBER];
-
- BLASLONG range_M_buffer[MAX_CPU_NUMBER + 2];
- BLASLONG range_N_buffer[MAX_CPU_NUMBER + 2];
- BLASLONG *range_M, *range_N;
- BLASLONG num_parts;
-
- BLASLONG nthreads = args -> nthreads;
-
- BLASLONG width, width_n, i, j, k, js;
- BLASLONG m, n, n_from, n_to;
- int mode;
- #if defined(DYNAMIC_ARCH)
- int switch_ratio = gotoblas->switch_ratio;
- #else
- int switch_ratio = SWITCH_RATIO;
- #endif
-
- /* Get execution mode */
- #ifndef COMPLEX
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
- #else
- mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
- #endif
- #else
- #ifdef XDOUBLE
- mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
- #elif defined(DOUBLE)
- mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
- #else
- mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
- #endif
- #endif
-
- #ifdef USE_OPENMP
- omp_set_lock(&level3_lock);
- omp_set_lock(&critical_section_lock);
-
- parallel_section_left--;
-
- /*
- How OpenMP locks works with NUM_PARALLEL
- 1) parallel_section_left = Number of available concurrent executions of OpenBLAS - Number of currently executing OpenBLAS executions
- 2) level3_lock is acting like a master lock or barrier which stops OpenBLAS calls when all the parallel_section are currently busy executing other OpenBLAS calls
- 3) critical_section_lock is used for updating variables shared between threads executing OpenBLAS calls concurrently and for unlocking of master lock whenever required
- 4) Unlock master lock only when we have not already exhausted all the parallel_sections and allow another thread with a OpenBLAS call to enter
- */
- if(parallel_section_left != 0)
- omp_unset_lock(&level3_lock);
-
- omp_unset_lock(&critical_section_lock);
-
- #elif defined(OS_WINDOWS)
- EnterCriticalSection((PCRITICAL_SECTION)&level3_lock);
- #else
- pthread_mutex_lock(&level3_lock);
- while(CPU_AVAILABLE < nthreads) {
- pthread_cond_wait(&level3_wakeup, &level3_lock);
- }
- CPU_AVAILABLE -= nthreads;
- WMB;
- pthread_mutex_unlock(&level3_lock);
- #endif
-
- #ifdef USE_ALLOC_HEAP
- /* Dynamically allocate workspace */
- job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
- if(job==NULL){
- fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
- exit(1);
- }
- #endif
-
- /* Initialize struct for arguments */
- newarg.m = args -> m;
- newarg.n = args -> n;
- newarg.k = args -> k;
- newarg.a = args -> a;
- newarg.b = args -> b;
- newarg.c = args -> c;
- newarg.lda = args -> lda;
- newarg.ldb = args -> ldb;
- newarg.ldc = args -> ldc;
- newarg.alpha = args -> alpha;
- newarg.beta = args -> beta;
- newarg.nthreads = args -> nthreads;
- newarg.common = (void *)job;
- #ifdef PARAMTEST
- newarg.gemm_p = args -> gemm_p;
- newarg.gemm_q = args -> gemm_q;
- newarg.gemm_r = args -> gemm_r;
- #endif
-
- /* Initialize partitions in m and n
- * Note: The number of CPU partitions is stored in the -1 entry */
- range_M = &range_M_buffer[1];
- range_N = &range_N_buffer[1];
- range_M[-1] = nthreads_m;
- range_N[-1] = nthreads_n;
- if (!range_m) {
- range_M[0] = 0;
- m = args -> m;
- } else {
- range_M[0] = range_m[0];
- m = range_m[1] - range_m[0];
- }
-
- /* Partition m into nthreads_m regions */
- num_parts = 0;
- while (m > 0){
- width = blas_quickdivide(m + nthreads_m - num_parts - 1, nthreads_m - num_parts);
-
- width = round_up(m, width, GEMM_PREFERED_SIZE);
-
- m -= width;
-
- if (m < 0) width = width + m;
- range_M[num_parts + 1] = range_M[num_parts] + width;
-
- num_parts ++;
- }
- for (i = num_parts; i < MAX_CPU_NUMBER; i++) {
- range_M[i + 1] = range_M[num_parts];
- }
-
- /* Initialize parameters for parallel execution */
- for (i = 0; i < nthreads; i++) {
- queue[i].mode = mode;
- queue[i].routine = inner_thread;
- queue[i].args = &newarg;
- queue[i].range_m = range_M;
- queue[i].range_n = range_N;
- queue[i].sa = NULL;
- queue[i].sb = NULL;
- queue[i].next = &queue[i + 1];
- }
- queue[0].sa = sa;
- queue[0].sb = sb;
- queue[nthreads - 1].next = NULL;
-
- /* Iterate through steps of n */
- if (!range_n) {
- n_from = 0;
- n_to = args -> n;
- } else {
- n_from = range_n[0];
- n_to = range_n[1];
- }
- for(js = n_from; js < n_to; js += GEMM_R * nthreads){
- n = n_to - js;
- if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
-
- /* Partition (a step of) n into nthreads regions */
- range_N[0] = js;
- num_parts = 0;
- for(j = 0; j < nthreads_n; j++){
- width_n = blas_quickdivide(n + nthreads_n - j - 1, nthreads_n - j);
- n -= width_n;
- for(i = 0; i < nthreads_m; i++){
- width = blas_quickdivide(width_n + nthreads_m - i - 1, nthreads_m - i);
- if (width < switch_ratio) {
- width = switch_ratio;
- }
- width = round_up(width_n, width, GEMM_PREFERED_SIZE);
-
- width_n -= width;
- if (width_n < 0) {
- width = width + width_n;
- width_n = 0;
- }
- range_N[num_parts + 1] = range_N[num_parts] + width;
-
- num_parts ++;
- }
- }
- for (j = num_parts; j < MAX_CPU_NUMBER; j++) {
- range_N[j + 1] = range_N[num_parts];
- }
-
- /* Clear synchronization flags */
- for (i = 0; i < nthreads; i++) {
- for (j = 0; j < nthreads; j++) {
- for (k = 0; k < DIVIDE_RATE; k++) {
- job[i].working[j][CACHE_LINE_SIZE * k] = 0;
- }
- }
- }
- WMB;
- /* Execute parallel computation */
- exec_blas(nthreads, queue);
- }
-
- #ifdef USE_ALLOC_HEAP
- free(job);
- #endif
-
- #ifdef USE_OPENMP
- omp_set_lock(&critical_section_lock);
- parallel_section_left++;
-
- /*
- Unlock master lock only when all the parallel_sections are already exhausted and one of the thread has completed its OpenBLAS call
- otherwise just increment the parallel_section_left
- The master lock is only locked when we have exhausted all the parallel_sections, So only unlock it then and otherwise just increment the count
- */
- if(parallel_section_left == 1)
- omp_unset_lock(&level3_lock);
-
- omp_unset_lock(&critical_section_lock);
-
- #elif defined(OS_WINDOWS)
- LeaveCriticalSection((PCRITICAL_SECTION)&level3_lock);
- #else
- pthread_mutex_lock(&level3_lock);
- CPU_AVAILABLE += nthreads;
- WMB;
- pthread_cond_signal(&level3_wakeup);
- pthread_mutex_unlock(&level3_lock);
- #endif
-
- return 0;
- }
-
- int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, IFLOAT *sa, IFLOAT *sb, BLASLONG mypos){
-
- BLASLONG m = args -> m;
- BLASLONG n = args -> n;
- BLASLONG nthreads_m, nthreads_n;
- #if defined(DYNAMIC_ARCH)
- int switch_ratio = gotoblas->switch_ratio;
- #else
- int switch_ratio = SWITCH_RATIO;
- #endif
-
- /* Get dimensions from index ranges if available */
- if (range_m) {
- m = range_m[1] - range_m[0];
- }
- if (range_n) {
- n = range_n[1] - range_n[0];
- }
-
- /* Partitions in m should have at least switch_ratio rows */
- if (m < 2 * switch_ratio) {
- nthreads_m = 1;
- } else {
- nthreads_m = args -> nthreads;
- while (m < nthreads_m * switch_ratio) {
- nthreads_m = nthreads_m / 2;
- }
- }
-
- /* Partitions in n should have at most switch_ratio * nthreads_m columns */
- if (n < switch_ratio * nthreads_m) {
- nthreads_n = 1;
- } else {
- nthreads_n = (n + switch_ratio * nthreads_m - 1) / (switch_ratio * nthreads_m);
- if (nthreads_m * nthreads_n > args -> nthreads) {
- nthreads_n = blas_quickdivide(args -> nthreads, nthreads_m);
- }
- /* The nthreads_m and nthreads_n are adjusted so that the submatrix */
- /* to be handled by each thread preferably becomes a square matrix */
- /* by minimizing an objective function 'n * nthreads_m + m * nthreads_n'. */
- /* Objective function come from sum of partitions in m and n. */
- /* (n / nthreads_n) + (m / nthreads_m) */
- /* = (n * nthreads_m + m * nthreads_n) / (nthreads_n * nthreads_m) */
- BLASLONG cost = 0, div = 0;
- BLASLONG i;
- for (i = 1; i <= sqrt(nthreads_m); i++) {
- if (nthreads_m % i) continue;
- BLASLONG j = nthreads_m / i;
- BLASLONG cost_i = n * j + m * nthreads_n * i;
- BLASLONG cost_j = n * i + m * nthreads_n * j;
- if (cost == 0 ||
- cost_i < cost) {cost = cost_i; div = i;}
- if (cost_j < cost) {cost = cost_j; div = j;}
- }
- if (div > 1) {
- nthreads_m /= div;
- nthreads_n *= div;
- }
- }
-
- /* Execute serial or parallel computation */
- if (nthreads_m * nthreads_n <= 1) {
- GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
- } else {
- args -> nthreads = nthreads_m * nthreads_n;
- gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n);
- }
-
- return 0;
- }
|