|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
-
-
- /* Table of constant values */
-
- static integer c__4 = 4;
- static integer c__8 = 8;
-
- /* > \brief \b ZLAROT */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, */
- /* XRIGHT ) */
-
- /* LOGICAL LLEFT, LRIGHT, LROWS */
- /* INTEGER LDA, NL */
- /* COMPLEX*16 C, S, XLEFT, XRIGHT */
- /* COMPLEX*16 A( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLAROT applies a (Givens) rotation to two adjacent rows or */
- /* > columns, where one element of the first and/or last column/row */
- /* > for use on matrices stored in some format other than GE, so */
- /* > that elements of the matrix may be used or modified for which */
- /* > no array element is provided. */
- /* > */
- /* > One example is a symmetric matrix in SB format (bandwidth=4), for */
- /* > which UPLO='L': Two adjacent rows will have the format: */
- /* > */
- /* > row j: C> C> C> C> C> . . . . */
- /* > row j+1: C> C> C> C> C> . . . . */
- /* > */
- /* > '*' indicates elements for which storage is provided, */
- /* > '.' indicates elements for which no storage is provided, but */
- /* > are not necessarily zero; their values are determined by */
- /* > symmetry. ' ' indicates elements which are necessarily zero, */
- /* > and have no storage provided. */
- /* > */
- /* > Those columns which have two '*'s can be handled by DROT. */
- /* > Those columns which have no '*'s can be ignored, since as long */
- /* > as the Givens rotations are carefully applied to preserve */
- /* > symmetry, their values are determined. */
- /* > Those columns which have one '*' have to be handled separately, */
- /* > by using separate variables "p" and "q": */
- /* > */
- /* > row j: C> C> C> C> C> p . . . */
- /* > row j+1: q C> C> C> C> C> . . . . */
- /* > */
- /* > The element p would have to be set correctly, then that column */
- /* > is rotated, setting p to its new value. The next call to */
- /* > ZLAROT would rotate columns j and j+1, using p, and restore */
- /* > symmetry. The element q would start out being zero, and be */
- /* > made non-zero by the rotation. Later, rotations would presumably */
- /* > be chosen to zero q out. */
- /* > */
- /* > Typical Calling Sequences: rotating the i-th and (i+1)-st rows. */
- /* > ------- ------- --------- */
- /* > */
- /* > General dense matrix: */
- /* > */
- /* > CALL ZLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, */
- /* > A(i,1),LDA, DUMMY, DUMMY) */
- /* > */
- /* > General banded matrix in GB format: */
- /* > */
- /* > j = MAX(1, i-KL ) */
- /* > NL = MIN( N, i+KU+1 ) + 1-j */
- /* > CALL ZLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, */
- /* > A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) */
- /* > */
- /* > [ note that i+1-j is just MIN(i,KL+1) ] */
- /* > */
- /* > Symmetric banded matrix in SY format, bandwidth K, */
- /* > lower triangle only: */
- /* > */
- /* > j = MAX(1, i-K ) */
- /* > NL = MIN( K+1, i ) + 1 */
- /* > CALL ZLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, */
- /* > A(i,j), LDA, XLEFT, XRIGHT ) */
- /* > */
- /* > Same, but upper triangle only: */
- /* > */
- /* > NL = MIN( K+1, N-i ) + 1 */
- /* > CALL ZLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, */
- /* > A(i,i), LDA, XLEFT, XRIGHT ) */
- /* > */
- /* > Symmetric banded matrix in SB format, bandwidth K, */
- /* > lower triangle only: */
- /* > */
- /* > [ same as for SY, except:] */
- /* > . . . . */
- /* > A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) */
- /* > */
- /* > [ note that i+1-j is just MIN(i,K+1) ] */
- /* > */
- /* > Same, but upper triangle only: */
- /* > . . . */
- /* > A(K+1,i), LDA-1, XLEFT, XRIGHT ) */
- /* > */
- /* > Rotating columns is just the transpose of rotating rows, except */
- /* > for GB and SB: (rotating columns i and i+1) */
- /* > */
- /* > GB: */
- /* > j = MAX(1, i-KU ) */
- /* > NL = MIN( N, i+KL+1 ) + 1-j */
- /* > CALL ZLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, */
- /* > A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
- /* > */
- /* > [note that KU+j+1-i is just MAX(1,KU+2-i)] */
- /* > */
- /* > SB: (upper triangle) */
- /* > */
- /* > . . . . . . */
- /* > A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) */
- /* > */
- /* > SB: (lower triangle) */
- /* > */
- /* > . . . . . . */
- /* > A(1,i),LDA-1, XTOP, XBOTTM ) */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \verbatim */
- /* > LROWS - LOGICAL */
- /* > If .TRUE., then ZLAROT will rotate two rows. If .FALSE., */
- /* > then it will rotate two columns. */
- /* > Not modified. */
- /* > */
- /* > LLEFT - LOGICAL */
- /* > If .TRUE., then XLEFT will be used instead of the */
- /* > corresponding element of A for the first element in the */
- /* > second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) */
- /* > If .FALSE., then the corresponding element of A will be */
- /* > used. */
- /* > Not modified. */
- /* > */
- /* > LRIGHT - LOGICAL */
- /* > If .TRUE., then XRIGHT will be used instead of the */
- /* > corresponding element of A for the last element in the */
- /* > first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If */
- /* > .FALSE., then the corresponding element of A will be used. */
- /* > Not modified. */
- /* > */
- /* > NL - INTEGER */
- /* > The length of the rows (if LROWS=.TRUE.) or columns (if */
- /* > LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are */
- /* > used, the columns/rows they are in should be included in */
- /* > NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at */
- /* > least 2. The number of rows/columns to be rotated */
- /* > exclusive of those involving XLEFT and/or XRIGHT may */
- /* > not be negative, i.e., NL minus how many of LLEFT and */
- /* > LRIGHT are .TRUE. must be at least zero; if not, XERBLA */
- /* > will be called. */
- /* > Not modified. */
- /* > */
- /* > C, S - COMPLEX*16 */
- /* > Specify the Givens rotation to be applied. If LROWS is */
- /* > true, then the matrix ( c s ) */
- /* > ( _ _ ) */
- /* > (-s c ) is applied from the left; */
- /* > if false, then the transpose (not conjugated) thereof is */
- /* > applied from the right. Note that in contrast to the */
- /* > output of ZROTG or to most versions of ZROT, both C and S */
- /* > are complex. For a Givens rotation, |C|**2 + |S|**2 should */
- /* > be 1, but this is not checked. */
- /* > Not modified. */
- /* > */
- /* > A - COMPLEX*16 array. */
- /* > The array containing the rows/columns to be rotated. The */
- /* > first element of A should be the upper left element to */
- /* > be rotated. */
- /* > Read and modified. */
- /* > */
- /* > LDA - INTEGER */
- /* > The "effective" leading dimension of A. If A contains */
- /* > a matrix stored in GE, HE, or SY format, then this is just */
- /* > the leading dimension of A as dimensioned in the calling */
- /* > routine. If A contains a matrix stored in band (GB, HB, or */
- /* > SB) format, then this should be *one less* than the leading */
- /* > dimension used in the calling routine. Thus, if A were */
- /* > dimensioned A(LDA,*) in ZLAROT, then A(1,j) would be the */
- /* > j-th element in the first of the two rows to be rotated, */
- /* > and A(2,j) would be the j-th in the second, regardless of */
- /* > how the array may be stored in the calling routine. [A */
- /* > cannot, however, actually be dimensioned thus, since for */
- /* > band format, the row number may exceed LDA, which is not */
- /* > legal FORTRAN.] */
- /* > If LROWS=.TRUE., then LDA must be at least 1, otherwise */
- /* > it must be at least NL minus the number of .TRUE. values */
- /* > in XLEFT and XRIGHT. */
- /* > Not modified. */
- /* > */
- /* > XLEFT - COMPLEX*16 */
- /* > If LLEFT is .TRUE., then XLEFT will be used and modified */
- /* > instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) */
- /* > (if LROWS=.FALSE.). */
- /* > Read and modified. */
- /* > */
- /* > XRIGHT - COMPLEX*16 */
- /* > If LRIGHT is .TRUE., then XRIGHT will be used and modified */
- /* > instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) */
- /* > (if LROWS=.FALSE.). */
- /* > Read and modified. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlarot_(logical *lrows, logical *lleft, logical *lright,
- integer *nl, doublecomplex *c__, doublecomplex *s, doublecomplex *a,
- integer *lda, doublecomplex *xleft, doublecomplex *xright)
- {
- /* System generated locals */
- integer i__1, i__2, i__3, i__4;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
-
- /* Local variables */
- integer iinc, j, inext;
- doublecomplex tempx;
- integer ix, iy, nt;
- doublecomplex xt[2], yt[2];
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer iyt;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Set up indices, arrays for ends */
-
- /* Parameter adjustments */
- --a;
-
- /* Function Body */
- if (*lrows) {
- iinc = *lda;
- inext = 1;
- } else {
- iinc = 1;
- inext = *lda;
- }
-
- if (*lleft) {
- nt = 1;
- ix = iinc + 1;
- iy = *lda + 2;
- xt[0].r = a[1].r, xt[0].i = a[1].i;
- yt[0].r = xleft->r, yt[0].i = xleft->i;
- } else {
- nt = 0;
- ix = 1;
- iy = inext + 1;
- }
-
- if (*lright) {
- iyt = inext + 1 + (*nl - 1) * iinc;
- ++nt;
- i__1 = nt - 1;
- xt[i__1].r = xright->r, xt[i__1].i = xright->i;
- i__1 = nt - 1;
- i__2 = iyt;
- yt[i__1].r = a[i__2].r, yt[i__1].i = a[i__2].i;
- }
-
- /* Check for errors */
-
- if (*nl < nt) {
- xerbla_("ZLAROT", &c__4, 6);
- return;
- }
- if (*lda <= 0 || ! (*lrows) && *lda < *nl - nt) {
- xerbla_("ZLAROT", &c__8, 6);
- return;
- }
-
- /* Rotate */
-
- /* ZROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S */
-
- i__1 = *nl - nt - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = ix + j * iinc;
- z__2.r = c__->r * a[i__2].r - c__->i * a[i__2].i, z__2.i = c__->r * a[
- i__2].i + c__->i * a[i__2].r;
- i__3 = iy + j * iinc;
- z__3.r = s->r * a[i__3].r - s->i * a[i__3].i, z__3.i = s->r * a[i__3]
- .i + s->i * a[i__3].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- tempx.r = z__1.r, tempx.i = z__1.i;
- i__2 = iy + j * iinc;
- d_cnjg(&z__4, s);
- z__3.r = -z__4.r, z__3.i = -z__4.i;
- i__3 = ix + j * iinc;
- z__2.r = z__3.r * a[i__3].r - z__3.i * a[i__3].i, z__2.i = z__3.r * a[
- i__3].i + z__3.i * a[i__3].r;
- d_cnjg(&z__6, c__);
- i__4 = iy + j * iinc;
- z__5.r = z__6.r * a[i__4].r - z__6.i * a[i__4].i, z__5.i = z__6.r * a[
- i__4].i + z__6.i * a[i__4].r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = ix + j * iinc;
- a[i__2].r = tempx.r, a[i__2].i = tempx.i;
- /* L10: */
- }
-
- /* ZROT( NT, XT,1, YT,1, C, S ) with complex C, S */
-
- i__1 = nt;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- z__2.r = c__->r * xt[i__2].r - c__->i * xt[i__2].i, z__2.i = c__->r *
- xt[i__2].i + c__->i * xt[i__2].r;
- i__3 = j - 1;
- z__3.r = s->r * yt[i__3].r - s->i * yt[i__3].i, z__3.i = s->r * yt[
- i__3].i + s->i * yt[i__3].r;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- tempx.r = z__1.r, tempx.i = z__1.i;
- i__2 = j - 1;
- d_cnjg(&z__4, s);
- z__3.r = -z__4.r, z__3.i = -z__4.i;
- i__3 = j - 1;
- z__2.r = z__3.r * xt[i__3].r - z__3.i * xt[i__3].i, z__2.i = z__3.r *
- xt[i__3].i + z__3.i * xt[i__3].r;
- d_cnjg(&z__6, c__);
- i__4 = j - 1;
- z__5.r = z__6.r * yt[i__4].r - z__6.i * yt[i__4].i, z__5.i = z__6.r *
- yt[i__4].i + z__6.i * yt[i__4].r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
- yt[i__2].r = z__1.r, yt[i__2].i = z__1.i;
- i__2 = j - 1;
- xt[i__2].r = tempx.r, xt[i__2].i = tempx.i;
- /* L20: */
- }
-
- /* Stuff values back into XLEFT, XRIGHT, etc. */
-
- if (*lleft) {
- a[1].r = xt[0].r, a[1].i = xt[0].i;
- xleft->r = yt[0].r, xleft->i = yt[0].i;
- }
-
- if (*lright) {
- i__1 = nt - 1;
- xright->r = xt[i__1].r, xright->i = xt[i__1].i;
- i__1 = iyt;
- i__2 = nt - 1;
- a[i__1].r = yt[i__2].r, a[i__1].i = yt[i__2].i;
- }
-
- return;
-
- /* End of ZLAROT */
-
- } /* zlarot_ */
|