|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__4 = 4;
- static integer c__12 = 12;
- static integer c__8 = 8;
- static integer c__40 = 40;
- static integer c__2 = 2;
- static integer c__3 = 3;
- static integer c__60 = 60;
-
- /* > \brief \b SLATM6 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA, */
- /* BETA, WX, WY, S, DIF ) */
-
- /* INTEGER LDA, LDX, LDY, N, TYPE */
- /* REAL ALPHA, BETA, WX, WY */
- /* REAL A( LDA, * ), B( LDA, * ), DIF( * ), S( * ), */
- /* $ X( LDX, * ), Y( LDY, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLATM6 generates test matrices for the generalized eigenvalue */
- /* > problem, their corresponding right and left eigenvector matrices, */
- /* > and also reciprocal condition numbers for all eigenvalues and */
- /* > the reciprocal condition numbers of eigenvectors corresponding to */
- /* > the 1th and 5th eigenvalues. */
- /* > */
- /* > Test Matrices */
- /* > ============= */
- /* > */
- /* > Two kinds of test matrix pairs */
- /* > */
- /* > (A, B) = inverse(YH) * (Da, Db) * inverse(X) */
- /* > */
- /* > are used in the tests: */
- /* > */
- /* > Type 1: */
- /* > Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 */
- /* > 0 2+a 0 0 0 0 1 0 0 0 */
- /* > 0 0 3+a 0 0 0 0 1 0 0 */
- /* > 0 0 0 4+a 0 0 0 0 1 0 */
- /* > 0 0 0 0 5+a , 0 0 0 0 1 , and */
- /* > */
- /* > Type 2: */
- /* > Da = 1 -1 0 0 0 Db = 1 0 0 0 0 */
- /* > 1 1 0 0 0 0 1 0 0 0 */
- /* > 0 0 1 0 0 0 0 1 0 0 */
- /* > 0 0 0 1+a 1+b 0 0 0 1 0 */
- /* > 0 0 0 -1-b 1+a , 0 0 0 0 1 . */
- /* > */
- /* > In both cases the same inverse(YH) and inverse(X) are used to compute */
- /* > (A, B), giving the exact eigenvectors to (A,B) as (YH, X): */
- /* > */
- /* > YH: = 1 0 -y y -y X = 1 0 -x -x x */
- /* > 0 1 -y y -y 0 1 x -x -x */
- /* > 0 0 1 0 0 0 0 1 0 0 */
- /* > 0 0 0 1 0 0 0 0 1 0 */
- /* > 0 0 0 0 1, 0 0 0 0 1 , */
- /* > */
- /* > where a, b, x and y will have all values independently of each other. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TYPE */
- /* > \verbatim */
- /* > TYPE is INTEGER */
- /* > Specifies the problem type (see further details). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > Size of the matrices A and B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, N). */
- /* > On exit A N-by-N is initialized according to TYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A and of B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDA, N). */
- /* > On exit B N-by-N is initialized according to TYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is REAL array, dimension (LDX, N). */
- /* > On exit X is the N-by-N matrix of right eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of X. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Y */
- /* > \verbatim */
- /* > Y is REAL array, dimension (LDY, N). */
- /* > On exit Y is the N-by-N matrix of left eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDY */
- /* > \verbatim */
- /* > LDY is INTEGER */
- /* > The leading dimension of Y. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BETA */
- /* > \verbatim */
- /* > BETA is REAL */
- /* > */
- /* > Weighting constants for matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WX */
- /* > \verbatim */
- /* > WX is REAL */
- /* > Constant for right eigenvector matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WY */
- /* > \verbatim */
- /* > WY is REAL */
- /* > Constant for left eigenvector matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (N) */
- /* > S(i) is the reciprocal condition number for eigenvalue i. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DIF */
- /* > \verbatim */
- /* > DIF is REAL array, dimension (N) */
- /* > DIF(i) is the reciprocal condition number for eigenvector i. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup real_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void slatm6_(integer *type__, integer *n, real *a, integer *
- lda, real *b, real *x, integer *ldx, real *y, integer *ldy, real *
- alpha, real *beta, real *wx, real *wy, real *s, real *dif)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, y_dim1,
- y_offset, i__1, i__2;
-
- /* Local variables */
- integer info;
- real work[100];
- integer i__, j;
- real z__[144] /* was [12][12] */;
- extern /* Subroutine */ void slakf2_(integer *, integer *, real *, integer
- *, real *, real *, real *, real *, integer *), sgesvd_(char *,
- char *, integer *, integer *, real *, integer *, real *, real *,
- integer *, real *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *);
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Generate test problem ... */
- /* (Da, Db) ... */
-
- /* Parameter adjustments */
- b_dim1 = *lda;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
- --s;
- --dif;
-
- /* Function Body */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
-
- if (i__ == j) {
- a[i__ + i__ * a_dim1] = (real) i__ + *alpha;
- b[i__ + i__ * b_dim1] = 1.f;
- } else {
- a[i__ + j * a_dim1] = 0.f;
- b[i__ + j * b_dim1] = 0.f;
- }
-
- /* L10: */
- }
- /* L20: */
- }
-
- /* Form X and Y */
-
- slacpy_("F", n, n, &b[b_offset], lda, &y[y_offset], ldy);
- y[y_dim1 + 3] = -(*wy);
- y[y_dim1 + 4] = *wy;
- y[y_dim1 + 5] = -(*wy);
- y[(y_dim1 << 1) + 3] = -(*wy);
- y[(y_dim1 << 1) + 4] = *wy;
- y[(y_dim1 << 1) + 5] = -(*wy);
-
- slacpy_("F", n, n, &b[b_offset], lda, &x[x_offset], ldx);
- x[x_dim1 * 3 + 1] = -(*wx);
- x[(x_dim1 << 2) + 1] = -(*wx);
- x[x_dim1 * 5 + 1] = *wx;
- x[x_dim1 * 3 + 2] = *wx;
- x[(x_dim1 << 2) + 2] = -(*wx);
- x[x_dim1 * 5 + 2] = -(*wx);
-
- /* Form (A, B) */
-
- b[b_dim1 * 3 + 1] = *wx + *wy;
- b[b_dim1 * 3 + 2] = -(*wx) + *wy;
- b[(b_dim1 << 2) + 1] = *wx - *wy;
- b[(b_dim1 << 2) + 2] = *wx - *wy;
- b[b_dim1 * 5 + 1] = -(*wx) + *wy;
- b[b_dim1 * 5 + 2] = *wx + *wy;
- if (*type__ == 1) {
- a[a_dim1 * 3 + 1] = *wx * a[a_dim1 + 1] + *wy * a[a_dim1 * 3 + 3];
- a[a_dim1 * 3 + 2] = -(*wx) * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 *
- 3 + 3];
- a[(a_dim1 << 2) + 1] = *wx * a[a_dim1 + 1] - *wy * a[(a_dim1 << 2) +
- 4];
- a[(a_dim1 << 2) + 2] = *wx * a[(a_dim1 << 1) + 2] - *wy * a[(a_dim1 <<
- 2) + 4];
- a[a_dim1 * 5 + 1] = -(*wx) * a[a_dim1 + 1] + *wy * a[a_dim1 * 5 + 5];
- a[a_dim1 * 5 + 2] = *wx * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 * 5 +
- 5];
- } else if (*type__ == 2) {
- a[a_dim1 * 3 + 1] = *wx * 2.f + *wy;
- a[a_dim1 * 3 + 2] = *wy;
- a[(a_dim1 << 2) + 1] = -(*wy) * (*alpha + 2.f + *beta);
- a[(a_dim1 << 2) + 2] = *wx * 2.f - *wy * (*alpha + 2.f + *beta);
- a[a_dim1 * 5 + 1] = *wx * -2.f + *wy * (*alpha - *beta);
- a[a_dim1 * 5 + 2] = *wy * (*alpha - *beta);
- a[a_dim1 + 1] = 1.f;
- a[(a_dim1 << 1) + 1] = -1.f;
- a[a_dim1 + 2] = 1.f;
- a[(a_dim1 << 1) + 2] = a[a_dim1 + 1];
- a[a_dim1 * 3 + 3] = 1.f;
- a[(a_dim1 << 2) + 4] = *alpha + 1.f;
- a[a_dim1 * 5 + 4] = *beta + 1.f;
- a[(a_dim1 << 2) + 5] = -a[a_dim1 * 5 + 4];
- a[a_dim1 * 5 + 5] = a[(a_dim1 << 2) + 4];
- }
-
- /* Compute condition numbers */
-
- if (*type__ == 1) {
-
- s[1] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[a_dim1 + 1] * a[a_dim1
- + 1] + 1.f));
- s[2] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[(a_dim1 << 1) + 2] * a[
- (a_dim1 << 1) + 2] + 1.f));
- s[3] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 3 + 3] * a[
- a_dim1 * 3 + 3] + 1.f));
- s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[(a_dim1 << 2) + 4] * a[
- (a_dim1 << 2) + 4] + 1.f));
- s[5] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 5 + 5] * a[
- a_dim1 * 5 + 5] + 1.f));
-
- slakf2_(&c__1, &c__4, &a[a_offset], lda, &a[(a_dim1 << 1) + 2], &b[
- b_offset], &b[(b_dim1 << 1) + 2], z__, &c__12);
- sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
- work[9], &c__1, &work[10], &c__40, &info);
- dif[1] = work[7];
-
- slakf2_(&c__4, &c__1, &a[a_offset], lda, &a[a_dim1 * 5 + 5], &b[
- b_offset], &b[b_dim1 * 5 + 5], z__, &c__12);
- sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
- work[9], &c__1, &work[10], &c__40, &info);
- dif[5] = work[7];
-
- } else if (*type__ == 2) {
-
- s[1] = 1.f / sqrt(*wy * *wy + .33333333333333331f);
- s[2] = s[1];
- s[3] = 1.f / sqrt(*wx * *wx + .5f);
- s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / ((*alpha + 1.f) * (*alpha
- + 1.f) + 1.f + (*beta + 1.f) * (*beta + 1.f)));
- s[5] = s[4];
-
- slakf2_(&c__2, &c__3, &a[a_offset], lda, &a[a_dim1 * 3 + 3], &b[
- b_offset], &b[b_dim1 * 3 + 3], z__, &c__12);
- sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
- &work[13], &c__1, &work[14], &c__60, &info);
- dif[1] = work[11];
-
- slakf2_(&c__3, &c__2, &a[a_offset], lda, &a[(a_dim1 << 2) + 4], &b[
- b_offset], &b[(b_dim1 << 2) + 4], z__, &c__12);
- sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
- &work[13], &c__1, &work[14], &c__60, &info);
- dif[5] = work[11];
-
- }
-
- return;
-
- /* End of SLATM6 */
-
- } /* slatm6_ */
|