|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
-
-
- /* Table of constant values */
-
- static real c_b29 = 1.f;
- static real c_b30 = 0.f;
- static real c_b33 = -1.f;
-
- /* > \brief \b SLATM5 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
- /* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
- /* QBLCKB ) */
-
- /* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
- /* $ PRTYPE, QBLCKA, QBLCKB */
- /* REAL ALPHA */
- /* REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), */
- /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
- /* $ L( LDL, * ), R( LDR, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLATM5 generates matrices involved in the Generalized Sylvester */
- /* > equation: */
- /* > */
- /* > A * R - L * B = C */
- /* > D * R - L * E = F */
- /* > */
- /* > They also satisfy (the diagonalization condition) */
- /* > */
- /* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
- /* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] PRTYPE */
- /* > \verbatim */
- /* > PRTYPE is INTEGER */
- /* > "Points" to a certain type of the matrices to generate */
- /* > (see further details). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > Specifies the order of A and D and the number of rows in */
- /* > C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > Specifies the order of B and E and the number of columns in */
- /* > C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, M). */
- /* > On exit A M-by-M is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB, N). */
- /* > On exit B N-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] C */
- /* > \verbatim */
- /* > C is REAL array, dimension (LDC, N). */
- /* > On exit C M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of C. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (LDD, M). */
- /* > On exit D M-by-M is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDD */
- /* > \verbatim */
- /* > LDD is INTEGER */
- /* > The leading dimension of D. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (LDE, N). */
- /* > On exit E N-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDE */
- /* > \verbatim */
- /* > LDE is INTEGER */
- /* > The leading dimension of E. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] F */
- /* > \verbatim */
- /* > F is REAL array, dimension (LDF, N). */
- /* > On exit F M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDF */
- /* > \verbatim */
- /* > LDF is INTEGER */
- /* > The leading dimension of F. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] R */
- /* > \verbatim */
- /* > R is REAL array, dimension (LDR, N). */
- /* > On exit R M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDR */
- /* > \verbatim */
- /* > LDR is INTEGER */
- /* > The leading dimension of R. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] L */
- /* > \verbatim */
- /* > L is REAL array, dimension (LDL, N). */
- /* > On exit L M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDL */
- /* > \verbatim */
- /* > LDL is INTEGER */
- /* > The leading dimension of L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is REAL */
- /* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QBLCKA */
- /* > \verbatim */
- /* > QBLCKA is INTEGER */
- /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
- /* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
- /* > referenced. QBLCKA > 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QBLCKB */
- /* > \verbatim */
- /* > QBLCKB is INTEGER */
- /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
- /* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
- /* > referenced. QBLCKB > 1. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup real_matgen */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
- /* > */
- /* > A : if (i == j) then A(i, j) = 1.0 */
- /* > if (j == i + 1) then A(i, j) = -1.0 */
- /* > else A(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
- /* > if (j == i + 1) then B(i, j) = 1.0 */
- /* > else B(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > D : if (i == j) then D(i, j) = 1.0 */
- /* > else D(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > E : if (i == j) then E(i, j) = 1.0 */
- /* > else E(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > L = R are chosen from [-10...10], */
- /* > which specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
- /* > */
- /* > A : if (i <= j) then A(i, j) = [-1...1] */
- /* > else A(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > if (PRTYPE = 3) then */
- /* > A(k + 1, k + 1) = A(k, k) */
- /* > A(k + 1, k) = [-1...1] */
- /* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
- /* > k = 1, M - 1, QBLCKA */
- /* > */
- /* > B : if (i <= j) then B(i, j) = [-1...1] */
- /* > else B(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > if (PRTYPE = 3) then */
- /* > B(k + 1, k + 1) = B(k, k) */
- /* > B(k + 1, k) = [-1...1] */
- /* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
- /* > k = 1, N - 1, QBLCKB */
- /* > */
- /* > D : if (i <= j) then D(i, j) = [-1...1]. */
- /* > else D(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > */
- /* > E : if (i <= j) then D(i, j) = [-1...1] */
- /* > else E(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > L, R are chosen from [-10...10], */
- /* > which specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 4 Full */
- /* > A(i, j) = [-10...10] */
- /* > D(i, j) = [-1...1] i,j = 1...M */
- /* > B(i, j) = [-10...10] */
- /* > E(i, j) = [-1...1] i,j = 1...N */
- /* > R(i, j) = [-10...10] */
- /* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
- /* > */
- /* > L, R specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 5 special case common and/or close eigs. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slatm5_(integer *prtype, integer *m, integer *n, real *a,
- integer *lda, real *b, integer *ldb, real *c__, integer *ldc, real *
- d__, integer *ldd, real *e, integer *lde, real *f, integer *ldf, real
- *r__, integer *ldr, real *l, integer *ldl, real *alpha, integer *
- qblcka, integer *qblckb)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
- r_dim1, r_offset, i__1, i__2;
-
- /* Local variables */
- integer i__, j, k;
- extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, real *,
- real *, integer *);
- real imeps, reeps;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1 * 1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1 * 1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
- r_dim1 = *ldr;
- r_offset = 1 + r_dim1 * 1;
- r__ -= r_offset;
- l_dim1 = *ldl;
- l_offset = 1 + l_dim1 * 1;
- l -= l_offset;
-
- /* Function Body */
- if (*prtype == 1) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- if (i__ == j) {
- a[i__ + j * a_dim1] = 1.f;
- d__[i__ + j * d_dim1] = 1.f;
- } else if (i__ == j - 1) {
- a[i__ + j * a_dim1] = -1.f;
- d__[i__ + j * d_dim1] = 0.f;
- } else {
- a[i__ + j * a_dim1] = 0.f;
- d__[i__ + j * d_dim1] = 0.f;
- }
- /* L10: */
- }
- /* L20: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- if (i__ == j) {
- b[i__ + j * b_dim1] = 1.f - *alpha;
- e[i__ + j * e_dim1] = 1.f;
- } else if (i__ == j - 1) {
- b[i__ + j * b_dim1] = 1.f;
- e[i__ + j * e_dim1] = 0.f;
- } else {
- b[i__ + j * b_dim1] = 0.f;
- e[i__ + j * e_dim1] = 0.f;
- }
- /* L30: */
- }
- /* L40: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ / j))) * 20.f;
- l[i__ + j * l_dim1] = r__[i__ + j * r_dim1];
- /* L50: */
- }
- /* L60: */
- }
-
- } else if (*prtype == 2 || *prtype == 3) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- if (i__ <= j) {
- a[i__ + j * a_dim1] = (.5f - sin((real) i__)) * 2.f;
- d__[i__ + j * d_dim1] = (.5f - sin((real) (i__ * j))) *
- 2.f;
- } else {
- a[i__ + j * a_dim1] = 0.f;
- d__[i__ + j * d_dim1] = 0.f;
- }
- /* L70: */
- }
- /* L80: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- if (i__ <= j) {
- b[i__ + j * b_dim1] = (.5f - sin((real) (i__ + j))) * 2.f;
- e[i__ + j * e_dim1] = (.5f - sin((real) j)) * 2.f;
- } else {
- b[i__ + j * b_dim1] = 0.f;
- e[i__ + j * e_dim1] = 0.f;
- }
- /* L90: */
- }
- /* L100: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ * j))) * 20.f;
- l[i__ + j * l_dim1] = (.5f - sin((real) (i__ + j))) * 20.f;
- /* L110: */
- }
- /* L120: */
- }
-
- if (*prtype == 3) {
- if (*qblcka <= 1) {
- *qblcka = 2;
- }
- i__1 = *m - 1;
- i__2 = *qblcka;
- for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
- a[k + 1 + (k + 1) * a_dim1] = a[k + k * a_dim1];
- a[k + 1 + k * a_dim1] = -sin(a[k + (k + 1) * a_dim1]);
- /* L130: */
- }
-
- if (*qblckb <= 1) {
- *qblckb = 2;
- }
- i__2 = *n - 1;
- i__1 = *qblckb;
- for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
- b[k + 1 + (k + 1) * b_dim1] = b[k + k * b_dim1];
- b[k + 1 + k * b_dim1] = -sin(b[k + (k + 1) * b_dim1]);
- /* L140: */
- }
- }
-
- } else if (*prtype == 4) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- a[i__ + j * a_dim1] = (.5f - sin((real) (i__ * j))) * 20.f;
- d__[i__ + j * d_dim1] = (.5f - sin((real) (i__ + j))) * 2.f;
- /* L150: */
- }
- /* L160: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- b[i__ + j * b_dim1] = (.5f - sin((real) (i__ + j))) * 20.f;
- e[i__ + j * e_dim1] = (.5f - sin((real) (i__ * j))) * 2.f;
- /* L170: */
- }
- /* L180: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- r__[i__ + j * r_dim1] = (.5f - sin((real) (j / i__))) * 20.f;
- l[i__ + j * l_dim1] = (.5f - sin((real) (i__ * j))) * 2.f;
- /* L190: */
- }
- /* L200: */
- }
-
- } else if (*prtype >= 5) {
- reeps = 20.f / *alpha;
- imeps = -1.5f / *alpha;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- r__[i__ + j * r_dim1] = (.5f - sin((real) (i__ * j))) * *
- alpha / 20.f;
- l[i__ + j * l_dim1] = (.5f - sin((real) (i__ + j))) * *alpha /
- 20.f;
- /* L210: */
- }
- /* L220: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__ + i__ * d_dim1] = 1.f;
- /* L230: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ <= 4) {
- a[i__ + i__ * a_dim1] = 1.f;
- if (i__ > 2) {
- a[i__ + i__ * a_dim1] = reeps + 1.f;
- }
- if (i__ % 2 != 0 && i__ < *m) {
- a[i__ + (i__ + 1) * a_dim1] = imeps;
- } else if (i__ > 1) {
- a[i__ + (i__ - 1) * a_dim1] = -imeps;
- }
- } else if (i__ <= 8) {
- if (i__ <= 6) {
- a[i__ + i__ * a_dim1] = reeps;
- } else {
- a[i__ + i__ * a_dim1] = -reeps;
- }
- if (i__ % 2 != 0 && i__ < *m) {
- a[i__ + (i__ + 1) * a_dim1] = 1.f;
- } else if (i__ > 1) {
- a[i__ + (i__ - 1) * a_dim1] = -1.f;
- }
- } else {
- a[i__ + i__ * a_dim1] = 1.f;
- if (i__ % 2 != 0 && i__ < *m) {
- a[i__ + (i__ + 1) * a_dim1] = imeps * 2;
- } else if (i__ > 1) {
- a[i__ + (i__ - 1) * a_dim1] = -imeps * 2;
- }
- }
- /* L240: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__ + i__ * e_dim1] = 1.f;
- if (i__ <= 4) {
- b[i__ + i__ * b_dim1] = -1.f;
- if (i__ > 2) {
- b[i__ + i__ * b_dim1] = 1.f - reeps;
- }
- if (i__ % 2 != 0 && i__ < *n) {
- b[i__ + (i__ + 1) * b_dim1] = imeps;
- } else if (i__ > 1) {
- b[i__ + (i__ - 1) * b_dim1] = -imeps;
- }
- } else if (i__ <= 8) {
- if (i__ <= 6) {
- b[i__ + i__ * b_dim1] = reeps;
- } else {
- b[i__ + i__ * b_dim1] = -reeps;
- }
- if (i__ % 2 != 0 && i__ < *n) {
- b[i__ + (i__ + 1) * b_dim1] = imeps + 1.f;
- } else if (i__ > 1) {
- b[i__ + (i__ - 1) * b_dim1] = -1.f - imeps;
- }
- } else {
- b[i__ + i__ * b_dim1] = 1.f - reeps;
- if (i__ % 2 != 0 && i__ < *n) {
- b[i__ + (i__ + 1) * b_dim1] = imeps * 2;
- } else if (i__ > 1) {
- b[i__ + (i__ - 1) * b_dim1] = -imeps * 2;
- }
- }
- /* L250: */
- }
- }
-
- /* Compute rhs (C, F) */
-
- sgemm_("N", "N", m, n, m, &c_b29, &a[a_offset], lda, &r__[r_offset], ldr,
- &c_b30, &c__[c_offset], ldc);
- sgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &b[b_offset], ldb, &
- c_b29, &c__[c_offset], ldc);
- sgemm_("N", "N", m, n, m, &c_b29, &d__[d_offset], ldd, &r__[r_offset],
- ldr, &c_b30, &f[f_offset], ldf);
- sgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &e[e_offset], lde, &
- c_b29, &f[f_offset], ldf);
-
- /* End of SLATM5 */
-
- return;
- } /* slatm5_ */
|