|
- *> \brief \b CDRVPB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- * RWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NOUT, NRHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER NVAL( * )
- * REAL RWORK( * ), S( * )
- * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
- * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVPB tests the driver routines CPBSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The maximum value permitted for N, used in dimensioning the
- *> work arrays.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (NMAX+2*NRHS)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- $ RWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NOUT, NRHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER NVAL( * )
- REAL RWORK( * ), S( * )
- COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
- $ BSAV( * ), WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES, NTESTS
- PARAMETER ( NTYPES = 8, NTESTS = 6 )
- INTEGER NBW
- PARAMETER ( NBW = 4 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
- CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
- CHARACTER*3 PATH
- INTEGER I, I1, I2, IEQUED, IFACT, IKD, IMAT, IN, INFO,
- $ IOFF, IUPLO, IW, IZERO, K, K1, KD, KL, KOFF,
- $ KU, LDA, LDAB, MODE, N, NB, NBMIN, NERRS,
- $ NFACT, NFAIL, NIMAT, NKD, NRUN, NT
- REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
- $ ROLDC, SCOND
- * ..
- * .. Local Arrays ..
- CHARACTER EQUEDS( 2 ), FACTS( 3 )
- INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
- REAL RESULT( NTESTS )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANGE, CLANHB, SGET06
- EXTERNAL LSAME, CLANGE, CLANHB, SGET06
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04,
- $ CLACPY, CLAIPD, CLAQHB, CLARHS, CLASET, CLATB4,
- $ CLATMS, CPBEQU, CPBSV, CPBSVX, CPBT01, CPBT02,
- $ CPBT05, CPBTRF, CPBTRS, CSWAP, XLAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA FACTS / 'F', 'N', 'E' / , EQUEDS / 'N', 'Y' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Complex precision'
- PATH( 2: 3 ) = 'PB'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL CERRVX( PATH, NOUT )
- INFOT = 0
- KDVAL( 1 ) = 0
- *
- * Set the block size and minimum block size for testing.
- *
- NB = 1
- NBMIN = 2
- CALL XLAENV( 1, NB )
- CALL XLAENV( 2, NBMIN )
- *
- * Do for each value of N in NVAL
- *
- DO 110 IN = 1, NN
- N = NVAL( IN )
- LDA = MAX( N, 1 )
- XTYPE = 'N'
- *
- * Set limits on the number of loop iterations.
- *
- NKD = MAX( 1, MIN( N, 4 ) )
- NIMAT = NTYPES
- IF( N.EQ.0 )
- $ NIMAT = 1
- *
- KDVAL( 2 ) = N + ( N+1 ) / 4
- KDVAL( 3 ) = ( 3*N-1 ) / 4
- KDVAL( 4 ) = ( N+1 ) / 4
- *
- DO 100 IKD = 1, NKD
- *
- * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
- * makes it easier to skip redundant values for small values
- * of N.
- *
- KD = KDVAL( IKD )
- LDAB = KD + 1
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 90 IUPLO = 1, 2
- KOFF = 1
- IF( IUPLO.EQ.1 ) THEN
- UPLO = 'U'
- PACKIT = 'Q'
- KOFF = MAX( 1, KD+2-N )
- ELSE
- UPLO = 'L'
- PACKIT = 'B'
- END IF
- *
- DO 80 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 80
- *
- * Skip types 2, 3, or 4 if the matrix size is too small.
- *
- ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
- IF( ZEROT .AND. N.LT.IMAT-1 )
- $ GO TO 80
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
- *
- * Set up parameters with CLATB4 and generate a test
- * matrix with CLATMS.
- *
- CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
- $ MODE, CNDNUM, DIST )
- *
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
- $ CNDNUM, ANORM, KD, KD, PACKIT,
- $ A( KOFF ), LDAB, WORK, INFO )
- *
- * Check error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N,
- $ N, -1, -1, -1, IMAT, NFAIL, NERRS,
- $ NOUT )
- GO TO 80
- END IF
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Use the same matrix for types 3 and 4 as for type
- * 2 by copying back the zeroed out column,
- *
- IW = 2*LDA + 1
- IF( IUPLO.EQ.1 ) THEN
- IOFF = ( IZERO-1 )*LDAB + KD + 1
- CALL CCOPY( IZERO-I1, WORK( IW ), 1,
- $ A( IOFF-IZERO+I1 ), 1 )
- IW = IW + IZERO - I1
- CALL CCOPY( I2-IZERO+1, WORK( IW ), 1,
- $ A( IOFF ), MAX( LDAB-1, 1 ) )
- ELSE
- IOFF = ( I1-1 )*LDAB + 1
- CALL CCOPY( IZERO-I1, WORK( IW ), 1,
- $ A( IOFF+IZERO-I1 ),
- $ MAX( LDAB-1, 1 ) )
- IOFF = ( IZERO-1 )*LDAB + 1
- IW = IW + IZERO - I1
- CALL CCOPY( I2-IZERO+1, WORK( IW ), 1,
- $ A( IOFF ), 1 )
- END IF
- END IF
- *
- * For types 2-4, zero one row and column of the matrix
- * to test that INFO is returned correctly.
- *
- IZERO = 0
- IF( ZEROT ) THEN
- IF( IMAT.EQ.2 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.3 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- *
- * Save the zeroed out row and column in WORK(*,3)
- *
- IW = 2*LDA
- DO 20 I = 1, MIN( 2*KD+1, N )
- WORK( IW+I ) = ZERO
- 20 CONTINUE
- IW = IW + 1
- I1 = MAX( IZERO-KD, 1 )
- I2 = MIN( IZERO+KD, N )
- *
- IF( IUPLO.EQ.1 ) THEN
- IOFF = ( IZERO-1 )*LDAB + KD + 1
- CALL CSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1,
- $ WORK( IW ), 1 )
- IW = IW + IZERO - I1
- CALL CSWAP( I2-IZERO+1, A( IOFF ),
- $ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
- ELSE
- IOFF = ( I1-1 )*LDAB + 1
- CALL CSWAP( IZERO-I1, A( IOFF+IZERO-I1 ),
- $ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
- IOFF = ( IZERO-1 )*LDAB + 1
- IW = IW + IZERO - I1
- CALL CSWAP( I2-IZERO+1, A( IOFF ), 1,
- $ WORK( IW ), 1 )
- END IF
- END IF
- *
- * Set the imaginary part of the diagonals.
- *
- IF( IUPLO.EQ.1 ) THEN
- CALL CLAIPD( N, A( KD+1 ), LDAB, 0 )
- ELSE
- CALL CLAIPD( N, A( 1 ), LDAB, 0 )
- END IF
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL CLACPY( 'Full', KD+1, N, A, LDAB, ASAV, LDAB )
- *
- DO 70 IEQUED = 1, 2
- EQUED = EQUEDS( IEQUED )
- IF( IEQUED.EQ.1 ) THEN
- NFACT = 3
- ELSE
- NFACT = 1
- END IF
- *
- DO 60 IFACT = 1, NFACT
- FACT = FACTS( IFACT )
- PREFAC = LSAME( FACT, 'F' )
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- *
- IF( ZEROT ) THEN
- IF( PREFAC )
- $ GO TO 60
- RCONDC = ZERO
- *
- ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
- *
- * Compute the condition number for comparison
- * with the value returned by CPBSVX (FACT =
- * 'N' reuses the condition number from the
- * previous iteration with FACT = 'F').
- *
- CALL CLACPY( 'Full', KD+1, N, ASAV, LDAB,
- $ AFAC, LDAB )
- IF( EQUIL .OR. IEQUED.GT.1 ) THEN
- *
- * Compute row and column scale factors to
- * equilibrate the matrix A.
- *
- CALL CPBEQU( UPLO, N, KD, AFAC, LDAB, S,
- $ SCOND, AMAX, INFO )
- IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
- IF( IEQUED.GT.1 )
- $ SCOND = ZERO
- *
- * Equilibrate the matrix.
- *
- CALL CLAQHB( UPLO, N, KD, AFAC, LDAB,
- $ S, SCOND, AMAX, EQUED )
- END IF
- END IF
- *
- * Save the condition number of the
- * non-equilibrated system for use in CGET04.
- *
- IF( EQUIL )
- $ ROLDC = RCONDC
- *
- * Compute the 1-norm of A.
- *
- ANORM = CLANHB( '1', UPLO, N, KD, AFAC, LDAB,
- $ RWORK )
- *
- * Factor the matrix A.
- *
- CALL CPBTRF( UPLO, N, KD, AFAC, LDAB, INFO )
- *
- * Form the inverse of A.
- *
- CALL CLASET( 'Full', N, N, CMPLX( ZERO ),
- $ CMPLX( ONE ), A, LDA )
- SRNAMT = 'CPBTRS'
- CALL CPBTRS( UPLO, N, KD, N, AFAC, LDAB, A,
- $ LDA, INFO )
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = CLANGE( '1', N, N, A, LDA, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- END IF
- *
- * Restore the matrix A.
- *
- CALL CLACPY( 'Full', KD+1, N, ASAV, LDAB, A,
- $ LDAB )
- *
- * Form an exact solution and set the right hand
- * side.
- *
- SRNAMT = 'CLARHS'
- CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD,
- $ KD, NRHS, A, LDAB, XACT, LDA, B,
- $ LDA, ISEED, INFO )
- XTYPE = 'C'
- CALL CLACPY( 'Full', N, NRHS, B, LDA, BSAV,
- $ LDA )
- *
- IF( NOFACT ) THEN
- *
- * --- Test CPBSV ---
- *
- * Compute the L*L' or U'*U factorization of the
- * matrix and solve the system.
- *
- CALL CLACPY( 'Full', KD+1, N, A, LDAB, AFAC,
- $ LDAB )
- CALL CLACPY( 'Full', N, NRHS, B, LDA, X,
- $ LDA )
- *
- SRNAMT = 'CPBSV '
- CALL CPBSV( UPLO, N, KD, NRHS, AFAC, LDAB, X,
- $ LDA, INFO )
- *
- * Check error code from CPBSV .
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'CPBSV ', INFO, IZERO,
- $ UPLO, N, N, KD, KD, NRHS,
- $ IMAT, NFAIL, NERRS, NOUT )
- GO TO 40
- ELSE IF( INFO.NE.0 ) THEN
- GO TO 40
- END IF
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CPBT01( UPLO, N, KD, A, LDAB, AFAC,
- $ LDAB, RWORK, RESULT( 1 ) )
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL CPBT02( UPLO, N, KD, NRHS, A, LDAB, X,
- $ LDA, WORK, LDA, RWORK,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ RCONDC, RESULT( 3 ) )
- NT = 3
- *
- * Print information about the tests that did
- * not pass the threshold.
- *
- DO 30 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'CPBSV ',
- $ UPLO, N, KD, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 30 CONTINUE
- NRUN = NRUN + NT
- 40 CONTINUE
- END IF
- *
- * --- Test CPBSVX ---
- *
- IF( .NOT.PREFAC )
- $ CALL CLASET( 'Full', KD+1, N, CMPLX( ZERO ),
- $ CMPLX( ZERO ), AFAC, LDAB )
- CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
- $ CMPLX( ZERO ), X, LDA )
- IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
- *
- * Equilibrate the matrix if FACT='F' and
- * EQUED='Y'
- *
- CALL CLAQHB( UPLO, N, KD, A, LDAB, S, SCOND,
- $ AMAX, EQUED )
- END IF
- *
- * Solve the system and compute the condition
- * number and error bounds using CPBSVX.
- *
- SRNAMT = 'CPBSVX'
- CALL CPBSVX( FACT, UPLO, N, KD, NRHS, A, LDAB,
- $ AFAC, LDAB, EQUED, S, B, LDA, X,
- $ LDA, RCOND, RWORK, RWORK( NRHS+1 ),
- $ WORK, RWORK( 2*NRHS+1 ), INFO )
- *
- * Check the error code from CPBSVX.
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'CPBSVX', INFO, IZERO,
- $ FACT // UPLO, N, N, KD, KD,
- $ NRHS, IMAT, NFAIL, NERRS, NOUT )
- GO TO 60
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( .NOT.PREFAC ) THEN
- *
- * Reconstruct matrix from factors and
- * compute residual.
- *
- CALL CPBT01( UPLO, N, KD, A, LDAB, AFAC,
- $ LDAB, RWORK( 2*NRHS+1 ),
- $ RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, BSAV, LDA,
- $ WORK, LDA )
- CALL CPBT02( UPLO, N, KD, NRHS, ASAV, LDAB,
- $ X, LDA, WORK, LDA,
- $ RWORK( 2*NRHS+1 ), RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
- $ 'N' ) ) ) THEN
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ RCONDC, RESULT( 3 ) )
- ELSE
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ ROLDC, RESULT( 3 ) )
- END IF
- *
- * Check the error bounds from iterative
- * refinement.
- *
- CALL CPBT05( UPLO, N, KD, NRHS, ASAV, LDAB,
- $ B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ),
- $ RESULT( 4 ) )
- ELSE
- K1 = 6
- END IF
- *
- * Compare RCOND from CPBSVX with the computed
- * value in RCONDC.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 50 K = K1, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'CPBSVX',
- $ FACT, UPLO, N, KD, EQUED, IMAT, K,
- $ RESULT( K )
- ELSE
- WRITE( NOUT, FMT = 9998 )'CPBSVX',
- $ FACT, UPLO, N, KD, IMAT, K,
- $ RESULT( K )
- END IF
- NFAIL = NFAIL + 1
- END IF
- 50 CONTINUE
- NRUN = NRUN + 7 - K1
- 60 CONTINUE
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- 110 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', KD =', I5,
- $ ', type ', I1, ', test(', I1, ')=', G12.5 )
- 9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
- $ ', ... ), type ', I1, ', test(', I1, ')=', G12.5 )
- 9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
- $ ', ... ), EQUED=''', A1, ''', type ', I1, ', test(', I1,
- $ ')=', G12.5 )
- RETURN
- *
- * End of CDRVPB
- *
- END
|