|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {1.,0.};
-
- /* > \brief \b ZUNM22 multiplies a general matrix by a banded unitary matrix. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZUNM22 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunm22.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunm22.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunm22.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC, */
- /* $ WORK, LWORK, INFO ) */
-
- /* CHARACTER SIDE, TRANS */
- /* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO */
- /* COMPLEX*16 Q( LDQ, * ), C( LDC, * ), WORK( * ) */
-
- /* > \par Purpose */
- /* ============ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZUNM22 overwrites the general complex M-by-N matrix C with */
- /* > */
- /* > SIDE = 'L' SIDE = 'R' */
- /* > TRANS = 'N': Q * C C * Q */
- /* > TRANS = 'C': Q**H * C C * Q**H */
- /* > */
- /* > where Q is a complex unitary matrix of order NQ, with NQ = M if */
- /* > SIDE = 'L' and NQ = N if SIDE = 'R'. */
- /* > The unitary matrix Q processes a 2-by-2 block structure */
- /* > */
- /* > [ Q11 Q12 ] */
- /* > Q = [ ] */
- /* > [ Q21 Q22 ], */
- /* > */
- /* > where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an */
- /* > N2-by-N2 upper triangular matrix. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'L': apply Q or Q**H from the Left; */
- /* > = 'R': apply Q or Q**H from the Right. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': apply Q (No transpose); */
- /* > = 'C': apply Q**H (Conjugate transpose). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix C. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix C. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N1 */
- /* > \param[in] N2 */
- /* > \verbatim */
- /* > N1 is INTEGER */
- /* > N2 is INTEGER */
- /* > The dimension of Q12 and Q21, respectively. N1, N2 >= 0. */
- /* > The following requirement must be satisfied: */
- /* > N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is COMPLEX*16 array, dimension */
- /* > (LDQ,M) if SIDE = 'L' */
- /* > (LDQ,N) if SIDE = 'R' */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= f2cmax(1,M) if SIDE = 'L'; LDQ >= f2cmax(1,N) if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is COMPLEX*16 array, dimension (LDC,N) */
- /* > On entry, the M-by-N matrix C. */
- /* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > If SIDE = 'L', LWORK >= f2cmax(1,N); */
- /* > if SIDE = 'R', LWORK >= f2cmax(1,M). */
- /* > For optimum performance LWORK >= M*N. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date January 2015 */
-
- /* > \ingroup complexOTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void zunm22_(char *side, char *trans, integer *m, integer *n,
- integer *n1, integer *n2, doublecomplex *q, integer *ldq,
- doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4;
- doublecomplex z__1;
-
- /* Local variables */
- logical left;
- integer i__;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *), ztrmm_(char *, char *, char *, char *,
- integer *, integer *, doublecomplex *, doublecomplex *, integer *
- , doublecomplex *, integer *);
- integer nb, nq, nw;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical notran;
- integer ldwork;
- extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- integer lwkopt;
- logical lquery;
- integer len;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* January 2015 */
-
-
-
- /* ===================================================================== */
-
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- left = lsame_(side, "L");
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
- /* NQ is the order of Q; */
- /* NW is the minimum dimension of WORK. */
-
- if (left) {
- nq = *m;
- } else {
- nq = *n;
- }
- nw = nq;
- if (*n1 == 0 || *n2 == 0) {
- nw = 1;
- }
- if (! left && ! lsame_(side, "R")) {
- *info = -1;
- } else if (! lsame_(trans, "N") && ! lsame_(trans,
- "C")) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*n1 < 0 || *n1 + *n2 != nq) {
- *info = -5;
- } else if (*n2 < 0) {
- *info = -6;
- } else if (*ldq < f2cmax(1,nq)) {
- *info = -8;
- } else if (*ldc < f2cmax(1,*m)) {
- *info = -10;
- } else if (*lwork < nw && ! lquery) {
- *info = -12;
- }
-
- if (*info == 0) {
- lwkopt = *m * *n;
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNM22", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- work[1].r = 1., work[1].i = 0.;
- return;
- }
-
- /* Degenerate cases (N1 = 0 or N2 = 0) are handled using ZTRMM. */
-
- if (*n1 == 0) {
- ztrmm_(side, "Upper", trans, "Non-Unit", m, n, &c_b1, &q[q_offset],
- ldq, &c__[c_offset], ldc);
- work[1].r = 1., work[1].i = 0.;
- return;
- } else if (*n2 == 0) {
- ztrmm_(side, "Lower", trans, "Non-Unit", m, n, &c_b1, &q[q_offset],
- ldq, &c__[c_offset], ldc);
- work[1].r = 1., work[1].i = 0.;
- return;
- }
-
- /* Compute the largest chunk size available from the workspace. */
-
- /* Computing MAX */
- i__1 = 1, i__2 = f2cmin(*lwork,lwkopt) / nq;
- nb = f2cmax(i__1,i__2);
-
- if (left) {
- if (notran) {
- i__1 = *n;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - i__ + 1;
- len = f2cmin(i__3,i__4);
- ldwork = *m;
-
- /* Multiply bottom part of C by Q12. */
-
- zlacpy_("All", n1, &len, &c__[*n2 + 1 + i__ * c_dim1], ldc, &
- work[1], &ldwork);
- ztrmm_("Left", "Lower", "No Transpose", "Non-Unit", n1, &len,
- &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
- ldwork);
-
- /* Multiply top part of C by Q11. */
-
- zgemm_("No Transpose", "No Transpose", n1, &len, n2, &c_b1, &
- q[q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1,
- &work[1], &ldwork);
-
- /* Multiply top part of C by Q21. */
-
- zlacpy_("All", n2, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
- n1 + 1], &ldwork);
- ztrmm_("Left", "Upper", "No Transpose", "Non-Unit", n2, &len,
- &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 + 1], &
- ldwork);
-
- /* Multiply bottom part of C by Q22. */
-
- zgemm_("No Transpose", "No Transpose", n2, &len, n1, &c_b1, &
- q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n2 + 1 +
- i__ * c_dim1], ldc, &c_b1, &work[*n1 + 1], &ldwork);
-
- /* Copy everything back. */
-
- zlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
- + 1], ldc);
- }
- } else {
- i__2 = *n;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - i__ + 1;
- len = f2cmin(i__3,i__4);
- ldwork = *m;
-
- /* Multiply bottom part of C by Q21**H. */
-
- zlacpy_("All", n2, &len, &c__[*n1 + 1 + i__ * c_dim1], ldc, &
- work[1], &ldwork);
- ztrmm_("Left", "Upper", "Conjugate", "Non-Unit", n2, &len, &
- c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
-
- /* Multiply top part of C by Q11**H. */
-
- zgemm_("Conjugate", "No Transpose", n2, &len, n1, &c_b1, &q[
- q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1, &
- work[1], &ldwork);
-
- /* Multiply top part of C by Q12**H. */
-
- zlacpy_("All", n1, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
- n2 + 1], &ldwork);
- ztrmm_("Left", "Lower", "Conjugate", "Non-Unit", n1, &len, &
- c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 + 1],
- &ldwork);
-
- /* Multiply bottom part of C by Q22**H. */
-
- zgemm_("Conjugate", "No Transpose", n1, &len, n2, &c_b1, &q[*
- n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n1 + 1 + i__
- * c_dim1], ldc, &c_b1, &work[*n2 + 1], &ldwork);
-
- /* Copy everything back. */
-
- zlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
- + 1], ldc);
- }
- }
- } else {
- if (notran) {
- i__1 = *m;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *m - i__ + 1;
- len = f2cmin(i__3,i__4);
- ldwork = len;
-
- /* Multiply right part of C by Q21. */
-
- zlacpy_("All", &len, n2, &c__[i__ + (*n1 + 1) * c_dim1], ldc,
- &work[1], &ldwork);
- ztrmm_("Right", "Upper", "No Transpose", "Non-Unit", &len, n2,
- &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
-
- /* Multiply left part of C by Q11. */
-
- zgemm_("No Transpose", "No Transpose", &len, n2, n1, &c_b1, &
- c__[i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, &
- work[1], &ldwork);
-
- /* Multiply left part of C by Q12. */
-
- zlacpy_("All", &len, n1, &c__[i__ + c_dim1], ldc, &work[*n2 *
- ldwork + 1], &ldwork);
- ztrmm_("Right", "Lower", "No Transpose", "Non-Unit", &len, n1,
- &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 *
- ldwork + 1], &ldwork);
-
- /* Multiply right part of C by Q22. */
-
- zgemm_("No Transpose", "No Transpose", &len, n1, n2, &c_b1, &
- c__[i__ + (*n1 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2
- + 1) * q_dim1], ldq, &c_b1, &work[*n2 * ldwork + 1], &
- ldwork);
-
- /* Copy everything back. */
-
- zlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
- ldc);
- }
- } else {
- i__2 = *m;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- /* Computing MIN */
- i__3 = nb, i__4 = *m - i__ + 1;
- len = f2cmin(i__3,i__4);
- ldwork = len;
-
- /* Multiply right part of C by Q12**H. */
-
- zlacpy_("All", &len, n1, &c__[i__ + (*n2 + 1) * c_dim1], ldc,
- &work[1], &ldwork);
- ztrmm_("Right", "Lower", "Conjugate", "Non-Unit", &len, n1, &
- c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
- ldwork);
-
- /* Multiply left part of C by Q11**H. */
-
- zgemm_("No Transpose", "Conjugate", &len, n1, n2, &c_b1, &c__[
- i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, &work[1]
- , &ldwork);
-
- /* Multiply left part of C by Q21**H. */
-
- zlacpy_("All", &len, n2, &c__[i__ + c_dim1], ldc, &work[*n1 *
- ldwork + 1], &ldwork);
- ztrmm_("Right", "Upper", "Conjugate", "Non-Unit", &len, n2, &
- c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 * ldwork +
- 1], &ldwork);
-
- /* Multiply right part of C by Q22**H. */
-
- zgemm_("No Transpose", "Conjugate", &len, n2, n1, &c_b1, &c__[
- i__ + (*n2 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2 + 1)
- * q_dim1], ldq, &c_b1, &work[*n1 * ldwork + 1], &
- ldwork);
-
- /* Copy everything back. */
-
- zlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
- ldc);
- }
- }
- }
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return;
-
- /* End of ZUNM22 */
-
- } /* zunm22_ */
|