|
- *> \brief \b ZUNCSD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZUNCSD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
- * SIGNS, M, P, Q, X11, LDX11, X12,
- * LDX12, X21, LDX21, X22, LDX22, THETA,
- * U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
- * LDV2T, WORK, LWORK, RWORK, LRWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
- * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
- * $ LDX21, LDX22, LRWORK, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION THETA( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- * $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
- * $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
- * $ * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZUNCSD computes the CS decomposition of an M-by-M partitioned
- *> unitary matrix X:
- *>
- *> [ I 0 0 | 0 0 0 ]
- *> [ 0 C 0 | 0 -S 0 ]
- *> [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H
- *> X = [-----------] = [---------] [---------------------] [---------] .
- *> [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
- *> [ 0 S 0 | 0 C 0 ]
- *> [ 0 0 I | 0 0 0 ]
- *>
- *> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
- *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
- *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
- *> which R = MIN(P,M-P,Q,M-Q).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU1
- *> \verbatim
- *> JOBU1 is CHARACTER
- *> = 'Y': U1 is computed;
- *> otherwise: U1 is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBU2
- *> \verbatim
- *> JOBU2 is CHARACTER
- *> = 'Y': U2 is computed;
- *> otherwise: U2 is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV1T
- *> \verbatim
- *> JOBV1T is CHARACTER
- *> = 'Y': V1T is computed;
- *> otherwise: V1T is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV2T
- *> \verbatim
- *> JOBV2T is CHARACTER
- *> = 'Y': V2T is computed;
- *> otherwise: V2T is not computed.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER
- *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
- *> order;
- *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
- *> major order.
- *> \endverbatim
- *>
- *> \param[in] SIGNS
- *> \verbatim
- *> SIGNS is CHARACTER
- *> = 'O': The lower-left block is made nonpositive (the
- *> "other" convention);
- *> otherwise: The upper-right block is made nonpositive (the
- *> "default" convention).
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows and columns in X.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows in X11 and X12. 0 <= P <= M.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is INTEGER
- *> The number of columns in X11 and X21. 0 <= Q <= M.
- *> \endverbatim
- *>
- *> \param[in,out] X11
- *> \verbatim
- *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX11
- *> \verbatim
- *> LDX11 is INTEGER
- *> The leading dimension of X11. LDX11 >= MAX(1,P).
- *> \endverbatim
- *>
- *> \param[in,out] X12
- *> \verbatim
- *> X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX12
- *> \verbatim
- *> LDX12 is INTEGER
- *> The leading dimension of X12. LDX12 >= MAX(1,P).
- *> \endverbatim
- *>
- *> \param[in,out] X21
- *> \verbatim
- *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX21
- *> \verbatim
- *> LDX21 is INTEGER
- *> The leading dimension of X11. LDX21 >= MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[in,out] X22
- *> \verbatim
- *> X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX22
- *> \verbatim
- *> LDX22 is INTEGER
- *> The leading dimension of X11. LDX22 >= MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[out] THETA
- *> \verbatim
- *> THETA is DOUBLE PRECISION array, dimension (R), in which R =
- *> MIN(P,M-P,Q,M-Q).
- *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
- *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
- *> \endverbatim
- *>
- *> \param[out] U1
- *> \verbatim
- *> U1 is COMPLEX*16 array, dimension (LDU1,P)
- *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
- *> \endverbatim
- *>
- *> \param[in] LDU1
- *> \verbatim
- *> LDU1 is INTEGER
- *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
- *> MAX(1,P).
- *> \endverbatim
- *>
- *> \param[out] U2
- *> \verbatim
- *> U2 is COMPLEX*16 array, dimension (LDU2,M-P)
- *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
- *> matrix U2.
- *> \endverbatim
- *>
- *> \param[in] LDU2
- *> \verbatim
- *> LDU2 is INTEGER
- *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
- *> MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[out] V1T
- *> \verbatim
- *> V1T is COMPLEX*16 array, dimension (LDV1T,Q)
- *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
- *> matrix V1**H.
- *> \endverbatim
- *>
- *> \param[in] LDV1T
- *> \verbatim
- *> LDV1T is INTEGER
- *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
- *> MAX(1,Q).
- *> \endverbatim
- *>
- *> \param[out] V2T
- *> \verbatim
- *> V2T is COMPLEX*16 array, dimension (LDV2T,M-Q)
- *> If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
- *> matrix V2**H.
- *> \endverbatim
- *>
- *> \param[in] LDV2T
- *> \verbatim
- *> LDV2T is INTEGER
- *> The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
- *> MAX(1,M-Q).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the work array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK)
- *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
- *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
- *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
- *> define the matrix in intermediate bidiagonal-block form
- *> remaining after nonconvergence. INFO specifies the number
- *> of nonzero PHI's.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of the array RWORK.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the RWORK array, returns
- *> this value as the first entry of the work array, and no error
- *> message related to LRWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: ZBBCSD did not converge. See the description of RWORK
- *> above for details.
- *> \endverbatim
- *
- *> \par References:
- * ================
- *>
- *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
- *> Algorithms, 50(1):33-65, 2009.
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
- $ SIGNS, M, P, Q, X11, LDX11, X12,
- $ LDX12, X21, LDX21, X22, LDX22, THETA,
- $ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
- $ LDV2T, WORK, LWORK, RWORK, LRWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
- INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
- $ LDX21, LDX22, LRWORK, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION THETA( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
- $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
- $ * )
- * ..
- *
- * ===================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE, ZERO
- PARAMETER ( ONE = (1.0D0,0.0D0),
- $ ZERO = (0.0D0,0.0D0) )
- * ..
- * .. Local Scalars ..
- CHARACTER TRANST, SIGNST
- INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
- $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
- $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
- $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
- $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
- $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
- $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
- $ LORGQRWORKOPT, LWORKMIN, LWORKOPT, P1, Q1
- LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
- $ WANTV1T, WANTV2T
- INTEGER LRWORKMIN, LRWORKOPT
- LOGICAL LRQUERY
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT,
- $ ZUNBDB, ZUNGLQ, ZUNGQR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Intrinsic Functions
- INTRINSIC INT, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- WANTU1 = LSAME( JOBU1, 'Y' )
- WANTU2 = LSAME( JOBU2, 'Y' )
- WANTV1T = LSAME( JOBV1T, 'Y' )
- WANTV2T = LSAME( JOBV2T, 'Y' )
- COLMAJOR = .NOT. LSAME( TRANS, 'T' )
- DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
- LQUERY = LWORK .EQ. -1
- LRQUERY = LRWORK .EQ. -1
- IF( M .LT. 0 ) THEN
- INFO = -7
- ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
- INFO = -8
- ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
- INFO = -9
- ELSE IF ( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
- INFO = -11
- ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
- INFO = -11
- ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
- INFO = -13
- ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
- INFO = -13
- ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
- INFO = -15
- ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
- INFO = -15
- ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
- INFO = -17
- ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
- INFO = -17
- ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
- INFO = -20
- ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
- INFO = -22
- ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
- INFO = -24
- ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
- INFO = -26
- END IF
- *
- * Work with transpose if convenient
- *
- IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
- IF( COLMAJOR ) THEN
- TRANST = 'T'
- ELSE
- TRANST = 'N'
- END IF
- IF( DEFAULTSIGNS ) THEN
- SIGNST = 'O'
- ELSE
- SIGNST = 'D'
- END IF
- CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
- $ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
- $ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
- $ U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
- $ INFO )
- RETURN
- END IF
- *
- * Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
- * convenient
- *
- IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
- IF( DEFAULTSIGNS ) THEN
- SIGNST = 'O'
- ELSE
- SIGNST = 'D'
- END IF
- CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
- $ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
- $ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
- $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
- RETURN
- END IF
- *
- * Compute workspace
- *
- IF( INFO .EQ. 0 ) THEN
- *
- * Real workspace
- *
- IPHI = 2
- IB11D = IPHI + MAX( 1, Q - 1 )
- IB11E = IB11D + MAX( 1, Q )
- IB12D = IB11E + MAX( 1, Q - 1 )
- IB12E = IB12D + MAX( 1, Q )
- IB21D = IB12E + MAX( 1, Q - 1 )
- IB21E = IB21D + MAX( 1, Q )
- IB22D = IB21E + MAX( 1, Q - 1 )
- IB22E = IB22D + MAX( 1, Q )
- IBBCSD = IB22E + MAX( 1, Q - 1 )
- CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
- $ THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T,
- $ V2T, LDV2T, THETA, THETA, THETA, THETA, THETA,
- $ THETA, THETA, THETA, RWORK, -1, CHILDINFO )
- LBBCSDWORKOPT = INT( RWORK(1) )
- LBBCSDWORKMIN = LBBCSDWORKOPT
- LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
- LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
- RWORK(1) = LRWORKOPT
- *
- * Complex workspace
- *
- ITAUP1 = 2
- ITAUP2 = ITAUP1 + MAX( 1, P )
- ITAUQ1 = ITAUP2 + MAX( 1, M - P )
- ITAUQ2 = ITAUQ1 + MAX( 1, Q )
- IORGQR = ITAUQ2 + MAX( 1, M - Q )
- CALL ZUNGQR( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
- $ CHILDINFO )
- LORGQRWORKOPT = INT( WORK(1) )
- LORGQRWORKMIN = MAX( 1, M - Q )
- IORGLQ = ITAUQ2 + MAX( 1, M - Q )
- CALL ZUNGLQ( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
- $ CHILDINFO )
- LORGLQWORKOPT = INT( WORK(1) )
- LORGLQWORKMIN = MAX( 1, M - Q )
- IORBDB = ITAUQ2 + MAX( 1, M - Q )
- CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
- $ X21, LDX21, X22, LDX22, THETA, THETA, U1, U2,
- $ V1T, V2T, WORK, -1, CHILDINFO )
- LORBDBWORKOPT = INT( WORK(1) )
- LORBDBWORKMIN = LORBDBWORKOPT
- LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
- $ IORBDB + LORBDBWORKOPT ) - 1
- LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
- $ IORBDB + LORBDBWORKMIN ) - 1
- WORK(1) = MAX(LWORKOPT,LWORKMIN)
- *
- IF( LWORK .LT. LWORKMIN
- $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
- INFO = -22
- ELSE IF( LRWORK .LT. LRWORKMIN
- $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
- INFO = -24
- ELSE
- LORGQRWORK = LWORK - IORGQR + 1
- LORGLQWORK = LWORK - IORGLQ + 1
- LORBDBWORK = LWORK - IORBDB + 1
- LBBCSDWORK = LRWORK - IBBCSD + 1
- END IF
- END IF
- *
- * Abort if any illegal arguments
- *
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'ZUNCSD', -INFO )
- RETURN
- ELSE IF( LQUERY .OR. LRQUERY ) THEN
- RETURN
- END IF
- *
- * Transform to bidiagonal block form
- *
- CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
- $ LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
- $ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
- $ WORK(IORBDB), LORBDBWORK, CHILDINFO )
- *
- * Accumulate Householder reflectors
- *
- IF( COLMAJOR ) THEN
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
- CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
- $ LORGQRWORK, INFO)
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
- CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
- $ WORK(IORGQR), LORGQRWORK, INFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
- $ LDV1T )
- V1T(1, 1) = ONE
- DO J = 2, Q
- V1T(1,J) = ZERO
- V1T(J,1) = ZERO
- END DO
- CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
- $ WORK(IORGLQ), LORGLQWORK, INFO )
- END IF
- IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
- CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
- IF( M-P .GT. Q) THEN
- CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
- $ V2T(P+1,P+1), LDV2T )
- END IF
- IF( M .GT. Q ) THEN
- CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
- $ WORK(IORGLQ), LORGLQWORK, INFO )
- END IF
- END IF
- ELSE
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
- CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
- $ LORGLQWORK, INFO)
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
- CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
- $ WORK(IORGLQ), LORGLQWORK, INFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
- $ LDV1T )
- V1T(1, 1) = ONE
- DO J = 2, Q
- V1T(1,J) = ZERO
- V1T(J,1) = ZERO
- END DO
- CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
- $ WORK(IORGQR), LORGQRWORK, INFO )
- END IF
- IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
- P1 = MIN( P+1, M )
- Q1 = MIN( Q+1, M )
- CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
- IF( M .GT. P+Q ) THEN
- CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P1,Q1), LDX22,
- $ V2T(P+1,P+1), LDV2T )
- END IF
- CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
- $ WORK(IORGQR), LORGQRWORK, INFO )
- END IF
- END IF
- *
- * Compute the CSD of the matrix in bidiagonal-block form
- *
- CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
- $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
- $ LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
- $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
- $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
- $ LBBCSDWORK, INFO )
- *
- * Permute rows and columns to place identity submatrices in top-
- * left corner of (1,1)-block and/or bottom-right corner of (1,2)-
- * block and/or bottom-right corner of (2,1)-block and/or top-left
- * corner of (2,2)-block
- *
- IF( Q .GT. 0 .AND. WANTU2 ) THEN
- DO I = 1, Q
- IWORK(I) = M - P - Q + I
- END DO
- DO I = Q + 1, M - P
- IWORK(I) = I - Q
- END DO
- IF( COLMAJOR ) THEN
- CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
- ELSE
- CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
- END IF
- END IF
- IF( M .GT. 0 .AND. WANTV2T ) THEN
- DO I = 1, P
- IWORK(I) = M - P - Q + I
- END DO
- DO I = P + 1, M - Q
- IWORK(I) = I - P
- END DO
- IF( .NOT. COLMAJOR ) THEN
- CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
- ELSE
- CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
- END IF
- END IF
- *
- RETURN
- *
- * End ZUNCSD
- *
- END
|