|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {-1.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZUNBDB4 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZUNBDB4 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb4
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb4
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb4
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, */
- /* TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, */
- /* INFO ) */
-
- /* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 */
- /* DOUBLE PRECISION PHI(*), THETA(*) */
- /* COMPLEX*16 PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), */
- /* $ WORK(*), X11(LDX11,*), X21(LDX21,*) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* >\verbatim */
- /* > */
- /* > ZUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny */
- /* > matrix X with orthonomal columns: */
- /* > */
- /* > [ B11 ] */
- /* > [ X11 ] [ P1 | ] [ 0 ] */
- /* > [-----] = [---------] [-----] Q1**T . */
- /* > [ X21 ] [ | P2 ] [ B21 ] */
- /* > [ 0 ] */
- /* > */
- /* > X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, */
- /* > M-P, or Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB3 handle cases in */
- /* > which M-Q is not the minimum dimension. */
- /* > */
- /* > The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), */
- /* > and (M-Q)-by-(M-Q), respectively. They are represented implicitly by */
- /* > Householder vectors. */
- /* > */
- /* > B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented */
- /* > implicitly by angles THETA, PHI. */
- /* > */
- /* >\endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows X11 plus the number of rows in X21. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is INTEGER */
- /* > The number of rows in X11. 0 <= P <= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is INTEGER */
- /* > The number of columns in X11 and X21. 0 <= Q <= M and */
- /* > M-Q <= f2cmin(P,M-P,Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X11 */
- /* > \verbatim */
- /* > X11 is COMPLEX*16 array, dimension (LDX11,Q) */
- /* > On entry, the top block of the matrix X to be reduced. On */
- /* > exit, the columns of tril(X11) specify reflectors for P1 and */
- /* > the rows of triu(X11,1) specify reflectors for Q1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX11 */
- /* > \verbatim */
- /* > LDX11 is INTEGER */
- /* > The leading dimension of X11. LDX11 >= P. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X21 */
- /* > \verbatim */
- /* > X21 is COMPLEX*16 array, dimension (LDX21,Q) */
- /* > On entry, the bottom block of the matrix X to be reduced. On */
- /* > exit, the columns of tril(X21) specify reflectors for P2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX21 */
- /* > \verbatim */
- /* > LDX21 is INTEGER */
- /* > The leading dimension of X21. LDX21 >= M-P. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] THETA */
- /* > \verbatim */
- /* > THETA is DOUBLE PRECISION array, dimension (Q) */
- /* > The entries of the bidiagonal blocks B11, B21 are defined by */
- /* > THETA and PHI. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PHI */
- /* > \verbatim */
- /* > PHI is DOUBLE PRECISION array, dimension (Q-1) */
- /* > The entries of the bidiagonal blocks B11, B21 are defined by */
- /* > THETA and PHI. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP1 */
- /* > \verbatim */
- /* > TAUP1 is COMPLEX*16 array, dimension (P) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > P1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP2 */
- /* > \verbatim */
- /* > TAUP2 is COMPLEX*16 array, dimension (M-P) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > P2. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUQ1 */
- /* > \verbatim */
- /* > TAUQ1 is COMPLEX*16 array, dimension (Q) */
- /* > The scalar factors of the elementary reflectors that define */
- /* > Q1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PHANTOM */
- /* > \verbatim */
- /* > PHANTOM is COMPLEX*16 array, dimension (M) */
- /* > The routine computes an M-by-1 column vector Y that is */
- /* > orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and */
- /* > PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and */
- /* > Y(P+1:M), respectively. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (LWORK) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= M-Q. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date July 2012 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The upper-bidiagonal blocks B11, B21 are represented implicitly by */
- /* > angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry */
- /* > in each bidiagonal band is a product of a sine or cosine of a THETA */
- /* > with a sine or cosine of a PHI. See [1] or ZUNCSD for details. */
- /* > */
- /* > P1, P2, and Q1 are represented as products of elementary reflectors. */
- /* > See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR */
- /* > and ZUNGLQ. */
- /* > \endverbatim */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
- /* > Algorithms, 50(1):33-65, 2009. */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void zunbdb4_(integer *m, integer *p, integer *q,
- doublecomplex *x11, integer *ldx11, doublecomplex *x21, integer *
- ldx21, doublereal *theta, doublereal *phi, doublecomplex *taup1,
- doublecomplex *taup2, doublecomplex *tauq1, doublecomplex *phantom,
- doublecomplex *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3,
- i__4;
- doublereal d__1, d__2;
- doublecomplex z__1;
-
- /* Local variables */
- integer lworkmin, lworkopt;
- doublereal c__;
- integer i__, j;
- doublereal s;
- integer ilarf, llarf;
- extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- integer childinfo;
- extern /* Subroutine */ void zlarf_(char *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *), zdrot_(integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, doublereal *);
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void zlacgv_(
- integer *, doublecomplex *, integer *);
- logical lquery;
- integer iorbdb5, lorbdb5;
- extern /* Subroutine */ void zunbdb5_(integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *), zlarfgp_(integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *);
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* July 2012 */
-
-
- /* ==================================================================== */
-
-
- /* Test input arguments */
-
- /* Parameter adjustments */
- x11_dim1 = *ldx11;
- x11_offset = 1 + x11_dim1 * 1;
- x11 -= x11_offset;
- x21_dim1 = *ldx21;
- x21_offset = 1 + x21_dim1 * 1;
- x21 -= x21_offset;
- --theta;
- --phi;
- --taup1;
- --taup2;
- --tauq1;
- --phantom;
- --work;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
-
- if (*m < 0) {
- *info = -1;
- } else if (*p < *m - *q || *m - *p < *m - *q) {
- *info = -2;
- } else if (*q < *m - *q || *q > *m) {
- *info = -3;
- } else if (*ldx11 < f2cmax(1,*p)) {
- *info = -5;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *m - *p;
- if (*ldx21 < f2cmax(i__1,i__2)) {
- *info = -7;
- }
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
- ilarf = 2;
- /* Computing MAX */
- i__1 = *q - 1, i__2 = *p - 1, i__1 = f2cmax(i__1,i__2), i__2 = *m - *p -
- 1;
- llarf = f2cmax(i__1,i__2);
- iorbdb5 = 2;
- lorbdb5 = *q;
- lworkopt = ilarf + llarf - 1;
- /* Computing MAX */
- i__1 = lworkopt, i__2 = iorbdb5 + lorbdb5 - 1;
- lworkopt = f2cmax(i__1,i__2);
- lworkmin = lworkopt;
- work[1].r = (doublereal) lworkopt, work[1].i = 0.;
- if (*lwork < lworkmin && ! lquery) {
- *info = -14;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZUNBDB4", &i__1, (ftnlen)7);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Reduce columns 1, ..., M-Q of X11 and X21 */
-
- i__1 = *m - *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- if (i__ == 1) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- i__3 = j;
- phantom[i__3].r = 0., phantom[i__3].i = 0.;
- }
- i__2 = *m - *p;
- zunbdb5_(p, &i__2, q, &phantom[1], &c__1, &phantom[*p + 1], &c__1,
- &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &work[
- iorbdb5], &lorbdb5, &childinfo);
- zscal_(p, &c_b1, &phantom[1], &c__1);
- zlarfgp_(p, &phantom[1], &phantom[2], &c__1, &taup1[1]);
- i__2 = *m - *p;
- zlarfgp_(&i__2, &phantom[*p + 1], &phantom[*p + 2], &c__1, &taup2[
- 1]);
- theta[i__] = atan2((doublereal) phantom[1].r, (doublereal)
- phantom[*p + 1].r);
- c__ = cos(theta[i__]);
- s = sin(theta[i__]);
- phantom[1].r = 1., phantom[1].i = 0.;
- i__2 = *p + 1;
- phantom[i__2].r = 1., phantom[i__2].i = 0.;
- d_cnjg(&z__1, &taup1[1]);
- zlarf_("L", p, q, &phantom[1], &c__1, &z__1, &x11[x11_offset],
- ldx11, &work[ilarf]);
- i__2 = *m - *p;
- d_cnjg(&z__1, &taup2[1]);
- zlarf_("L", &i__2, q, &phantom[*p + 1], &c__1, &z__1, &x21[
- x21_offset], ldx21, &work[ilarf]);
- } else {
- i__2 = *p - i__ + 1;
- i__3 = *m - *p - i__ + 1;
- i__4 = *q - i__ + 1;
- zunbdb5_(&i__2, &i__3, &i__4, &x11[i__ + (i__ - 1) * x11_dim1], &
- c__1, &x21[i__ + (i__ - 1) * x21_dim1], &c__1, &x11[i__ +
- i__ * x11_dim1], ldx11, &x21[i__ + i__ * x21_dim1], ldx21,
- &work[iorbdb5], &lorbdb5, &childinfo);
- i__2 = *p - i__ + 1;
- zscal_(&i__2, &c_b1, &x11[i__ + (i__ - 1) * x11_dim1], &c__1);
- i__2 = *p - i__ + 1;
- zlarfgp_(&i__2, &x11[i__ + (i__ - 1) * x11_dim1], &x11[i__ + 1 + (
- i__ - 1) * x11_dim1], &c__1, &taup1[i__]);
- i__2 = *m - *p - i__ + 1;
- zlarfgp_(&i__2, &x21[i__ + (i__ - 1) * x21_dim1], &x21[i__ + 1 + (
- i__ - 1) * x21_dim1], &c__1, &taup2[i__]);
- theta[i__] = atan2((doublereal) x11[i__ + (i__ - 1) * x11_dim1].r,
- (doublereal) x21[i__ + (i__ - 1) * x21_dim1].r);
- c__ = cos(theta[i__]);
- s = sin(theta[i__]);
- i__2 = i__ + (i__ - 1) * x11_dim1;
- x11[i__2].r = 1., x11[i__2].i = 0.;
- i__2 = i__ + (i__ - 1) * x21_dim1;
- x21[i__2].r = 1., x21[i__2].i = 0.;
- i__2 = *p - i__ + 1;
- i__3 = *q - i__ + 1;
- d_cnjg(&z__1, &taup1[i__]);
- zlarf_("L", &i__2, &i__3, &x11[i__ + (i__ - 1) * x11_dim1], &c__1,
- &z__1, &x11[i__ + i__ * x11_dim1], ldx11, &work[ilarf]);
- i__2 = *m - *p - i__ + 1;
- i__3 = *q - i__ + 1;
- d_cnjg(&z__1, &taup2[i__]);
- zlarf_("L", &i__2, &i__3, &x21[i__ + (i__ - 1) * x21_dim1], &c__1,
- &z__1, &x21[i__ + i__ * x21_dim1], ldx21, &work[ilarf]);
- }
-
- i__2 = *q - i__ + 1;
- d__1 = -c__;
- zdrot_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11, &x21[i__ + i__ *
- x21_dim1], ldx21, &s, &d__1);
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x21[i__ + i__ * x21_dim1], ldx21);
- i__2 = *q - i__ + 1;
- zlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + (i__ + 1) *
- x21_dim1], ldx21, &tauq1[i__]);
- i__2 = i__ + i__ * x21_dim1;
- c__ = x21[i__2].r;
- i__2 = i__ + i__ * x21_dim1;
- x21[i__2].r = 1., x21[i__2].i = 0.;
- i__2 = *p - i__;
- i__3 = *q - i__ + 1;
- zlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &tauq1[
- i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[ilarf]);
- i__2 = *m - *p - i__;
- i__3 = *q - i__ + 1;
- zlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &tauq1[
- i__], &x21[i__ + 1 + i__ * x21_dim1], ldx21, &work[ilarf]);
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x21[i__ + i__ * x21_dim1], ldx21);
- if (i__ < *m - *q) {
- i__2 = *p - i__;
- /* Computing 2nd power */
- d__1 = dznrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
- i__3 = *m - *p - i__;
- /* Computing 2nd power */
- d__2 = dznrm2_(&i__3, &x21[i__ + 1 + i__ * x21_dim1], &c__1);
- s = sqrt(d__1 * d__1 + d__2 * d__2);
- phi[i__] = atan2(s, c__);
- }
-
- }
-
- /* Reduce the bottom-right portion of X11 to [ I 0 ] */
-
- i__1 = *p;
- for (i__ = *m - *q + 1; i__ <= i__1; ++i__) {
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
- i__2 = *q - i__ + 1;
- zlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) *
- x11_dim1], ldx11, &tauq1[i__]);
- i__2 = i__ + i__ * x11_dim1;
- x11[i__2].r = 1., x11[i__2].i = 0.;
- i__2 = *p - i__;
- i__3 = *q - i__ + 1;
- zlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
- i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[ilarf]);
- i__2 = *q - *p;
- i__3 = *q - i__ + 1;
- zlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
- i__], &x21[*m - *q + 1 + i__ * x21_dim1], ldx21, &work[ilarf]);
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
- }
-
- /* Reduce the bottom-right portion of X21 to [ 0 I ] */
-
- i__1 = *q;
- for (i__ = *p + 1; i__ <= i__1; ++i__) {
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x21[*m - *q + i__ - *p + i__ * x21_dim1], ldx21);
- i__2 = *q - i__ + 1;
- zlarfgp_(&i__2, &x21[*m - *q + i__ - *p + i__ * x21_dim1], &x21[*m - *
- q + i__ - *p + (i__ + 1) * x21_dim1], ldx21, &tauq1[i__]);
- i__2 = *m - *q + i__ - *p + i__ * x21_dim1;
- x21[i__2].r = 1., x21[i__2].i = 0.;
- i__2 = *q - i__;
- i__3 = *q - i__ + 1;
- zlarf_("R", &i__2, &i__3, &x21[*m - *q + i__ - *p + i__ * x21_dim1],
- ldx21, &tauq1[i__], &x21[*m - *q + i__ - *p + 1 + i__ *
- x21_dim1], ldx21, &work[ilarf]);
- i__2 = *q - i__ + 1;
- zlacgv_(&i__2, &x21[*m - *q + i__ - *p + i__ * x21_dim1], ldx21);
- }
-
- return;
-
- /* End of ZUNBDB4 */
-
- } /* zunbdb4_ */
|