|
- *> \brief \b ZTZRZF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTZRZF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrzf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrzf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrzf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
- *> to upper triangular form by means of unitary transformations.
- *>
- *> The upper trapezoidal matrix A is factored as
- *>
- *> A = ( R 0 ) * Z,
- *>
- *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
- *> triangular matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= M.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the leading M-by-N upper trapezoidal part of the
- *> array A must contain the matrix to be factorized.
- *> On exit, the leading M-by-M upper triangular part of A
- *> contains the upper triangular matrix R, and elements M+1 to
- *> N of the first M rows of A, with the array TAU, represent the
- *> unitary matrix Z as a product of M elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (M)
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,M).
- *> For optimum performance LWORK >= M*NB, where NB is
- *> the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The N-by-N matrix Z can be computed by
- *>
- *> Z = Z(1)*Z(2)* ... *Z(M)
- *>
- *> where each N-by-N Z(k) is given by
- *>
- *> Z(k) = I - tau(k)*v(k)*v(k)**H
- *>
- *> with v(k) is the kth row vector of the M-by-N matrix
- *>
- *> V = ( I A(:,M+1:N) )
- *>
- *> I is the M-by-M identity matrix, A(:,M+1:N)
- *> is the output stored in A on exit from ZTZRZF,
- *> and tau(k) is the kth element of the array TAU.
- *>
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
- $ M1, MU, NB, NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZLARZB, ZLARZT, ZLATRZ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( M.EQ.0 .OR. M.EQ.N ) THEN
- LWKOPT = 1
- LWKMIN = 1
- ELSE
- *
- * Determine the block size.
- *
- NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
- LWKOPT = M*NB
- LWKMIN = MAX( 1, M )
- END IF
- WORK( 1 ) = LWKOPT
- *
- IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -7
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTZRZF', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 ) THEN
- RETURN
- ELSE IF( M.EQ.N ) THEN
- DO 10 I = 1, N
- TAU( I ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- NBMIN = 2
- NX = 1
- IWS = M
- IF( NB.GT.1 .AND. NB.LT.M ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
- IF( NX.LT.M ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = M
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
- $ -1 ) )
- END IF
- END IF
- END IF
- *
- IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
- *
- * Use blocked code initially.
- * The last kk rows are handled by the block method.
- *
- M1 = MIN( M+1, N )
- KI = ( ( M-NX-1 ) / NB )*NB
- KK = MIN( M, KI+NB )
- *
- DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
- IB = MIN( M-I+1, NB )
- *
- * Compute the TZ factorization of the current block
- * A(i:i+ib-1,i:n)
- *
- CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
- $ WORK )
- IF( I.GT.1 ) THEN
- *
- * Form the triangular factor of the block reflector
- * H = H(i+ib-1) . . . H(i+1) H(i)
- *
- CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
- $ LDA, TAU( I ), WORK, LDWORK )
- *
- * Apply H to A(1:i-1,i:n) from the right
- *
- CALL ZLARZB( 'Right', 'No transpose', 'Backward',
- $ 'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
- $ LDA, WORK, LDWORK, A( 1, I ), LDA,
- $ WORK( IB+1 ), LDWORK )
- END IF
- 20 CONTINUE
- MU = I + NB - 1
- ELSE
- MU = M
- END IF
- *
- * Use unblocked code to factor the last or only block
- *
- IF( MU.GT.0 )
- $ CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of ZTZRZF
- *
- END
|