|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static integer c__1 = 1;
-
- /* > \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm). */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZTGSY2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, */
- /* LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, */
- /* INFO ) */
-
- /* CHARACTER TRANS */
- /* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N */
- /* DOUBLE PRECISION RDSCAL, RDSUM, SCALE */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), */
- /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZTGSY2 solves the generalized Sylvester equation */
- /* > */
- /* > A * R - L * B = scale * C (1) */
- /* > D * R - L * E = scale * F */
- /* > */
- /* > using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, */
- /* > (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
- /* > N-by-N and M-by-N, respectively. A, B, D and E are upper triangular */
- /* > (i.e., (A,D) and (B,E) in generalized Schur form). */
- /* > */
- /* > The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
- /* > scaling factor chosen to avoid overflow. */
- /* > */
- /* > In matrix notation solving equation (1) corresponds to solve */
- /* > Zx = scale * b, where Z is defined as */
- /* > */
- /* > Z = [ kron(In, A) -kron(B**H, Im) ] (2) */
- /* > [ kron(In, D) -kron(E**H, Im) ], */
- /* > */
- /* > Ik is the identity matrix of size k and X**H is the conjuguate transpose of X. */
- /* > kron(X, Y) is the Kronecker product between the matrices X and Y. */
- /* > */
- /* > If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b */
- /* > is solved for, which is equivalent to solve for R and L in */
- /* > */
- /* > A**H * R + D**H * L = scale * C (3) */
- /* > R * B**H + L * E**H = scale * -F */
- /* > */
- /* > This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
- /* > = sigma_min(Z) using reverse communication with ZLACON. */
- /* > */
- /* > ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL */
- /* > of an upper bound on the separation between to matrix pairs. Then */
- /* > the input (A, D), (B, E) are sub-pencils of two matrix pairs in */
- /* > ZTGSYL. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': solve the generalized Sylvester equation (1). */
- /* > = 'T': solve the 'transposed' system (3). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IJOB */
- /* > \verbatim */
- /* > IJOB is INTEGER */
- /* > Specifies what kind of functionality to be performed. */
- /* > =0: solve (1) only. */
- /* > =1: A contribution from this subsystem to a Frobenius */
- /* > norm-based estimate of the separation between two matrix */
- /* > pairs is computed. (look ahead strategy is used). */
- /* > =2: A contribution from this subsystem to a Frobenius */
- /* > norm-based estimate of the separation between two matrix */
- /* > pairs is computed. (DGECON on sub-systems is used.) */
- /* > Not referenced if TRANS = 'T'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > On entry, M specifies the order of A and D, and the row */
- /* > dimension of C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > On entry, N specifies the order of B and E, and the column */
- /* > dimension of C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA, M) */
- /* > On entry, A contains an upper triangular matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the matrix A. LDA >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB, N) */
- /* > On entry, B contains an upper triangular matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the matrix B. LDB >= f2cmax(1, N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is COMPLEX*16 array, dimension (LDC, N) */
- /* > On entry, C contains the right-hand-side of the first matrix */
- /* > equation in (1). */
- /* > On exit, if IJOB = 0, C has been overwritten by the solution */
- /* > R. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the matrix C. LDC >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is COMPLEX*16 array, dimension (LDD, M) */
- /* > On entry, D contains an upper triangular matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDD */
- /* > \verbatim */
- /* > LDD is INTEGER */
- /* > The leading dimension of the matrix D. LDD >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E */
- /* > \verbatim */
- /* > E is COMPLEX*16 array, dimension (LDE, N) */
- /* > On entry, E contains an upper triangular matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDE */
- /* > \verbatim */
- /* > LDE is INTEGER */
- /* > The leading dimension of the matrix E. LDE >= f2cmax(1, N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] F */
- /* > \verbatim */
- /* > F is COMPLEX*16 array, dimension (LDF, N) */
- /* > On entry, F contains the right-hand-side of the second matrix */
- /* > equation in (1). */
- /* > On exit, if IJOB = 0, F has been overwritten by the solution */
- /* > L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDF */
- /* > \verbatim */
- /* > LDF is INTEGER */
- /* > The leading dimension of the matrix F. LDF >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is DOUBLE PRECISION */
- /* > On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
- /* > R and L (C and F on entry) will hold the solutions to a */
- /* > slightly perturbed system but the input matrices A, B, D and */
- /* > E have not been changed. If SCALE = 0, R and L will hold the */
- /* > solutions to the homogeneous system with C = F = 0. */
- /* > Normally, SCALE = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RDSUM */
- /* > \verbatim */
- /* > RDSUM is DOUBLE PRECISION */
- /* > On entry, the sum of squares of computed contributions to */
- /* > the Dif-estimate under computation by ZTGSYL, where the */
- /* > scaling factor RDSCAL (see below) has been factored out. */
- /* > On exit, the corresponding sum of squares updated with the */
- /* > contributions from the current sub-system. */
- /* > If TRANS = 'T' RDSUM is not touched. */
- /* > NOTE: RDSUM only makes sense when ZTGSY2 is called by */
- /* > ZTGSYL. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RDSCAL */
- /* > \verbatim */
- /* > RDSCAL is DOUBLE PRECISION */
- /* > On entry, scaling factor used to prevent overflow in RDSUM. */
- /* > On exit, RDSCAL is updated w.r.t. the current contributions */
- /* > in RDSUM. */
- /* > If TRANS = 'T', RDSCAL is not touched. */
- /* > NOTE: RDSCAL only makes sense when ZTGSY2 is called by */
- /* > ZTGSYL. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > On exit, if INFO is set to */
- /* > =0: Successful exit */
- /* > <0: If INFO = -i, input argument number i is illegal. */
- /* > >0: The matrix pairs (A, D) and (B, E) have common or very */
- /* > close eigenvalues. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16SYauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* ===================================================================== */
- /* Subroutine */ void ztgsy2_(char *trans, integer *ijob, integer *m, integer *
- n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
- doublecomplex *c__, integer *ldc, doublecomplex *d__, integer *ldd,
- doublecomplex *e, integer *lde, doublecomplex *f, integer *ldf,
- doublereal *scale, doublereal *rdsum, doublereal *rdscal, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
- i__4;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
-
- /* Local variables */
- integer ierr, ipiv[2], jpiv[2], i__, j, k;
- doublecomplex alpha, z__[4] /* was [2][2] */;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *), zgesc2_(
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- integer *, doublereal *), zgetc2_(integer *, doublecomplex *,
- integer *, integer *, integer *, integer *);
- doublereal scaloc;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void zlatdf_(
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- doublereal *, doublereal *, integer *, integer *);
- logical notran;
- doublecomplex rhs[2];
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1 * 1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1 * 1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
-
- /* Function Body */
- *info = 0;
- ierr = 0;
- notran = lsame_(trans, "N");
- if (! notran && ! lsame_(trans, "C")) {
- *info = -1;
- } else if (notran) {
- if (*ijob < 0 || *ijob > 2) {
- *info = -2;
- }
- }
- if (*info == 0) {
- if (*m <= 0) {
- *info = -3;
- } else if (*n <= 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -6;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -8;
- } else if (*ldc < f2cmax(1,*m)) {
- *info = -10;
- } else if (*ldd < f2cmax(1,*m)) {
- *info = -12;
- } else if (*lde < f2cmax(1,*n)) {
- *info = -14;
- } else if (*ldf < f2cmax(1,*m)) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZTGSY2", &i__1, (ftnlen)6);
- return;
- }
-
- if (notran) {
-
- /* Solve (I, J) - system */
- /* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
- /* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
- /* for I = M, M - 1, ..., 1; J = 1, 2, ..., N */
-
- *scale = 1.;
- scaloc = 1.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
-
- /* Build 2 by 2 system */
-
- i__2 = i__ + i__ * a_dim1;
- z__[0].r = a[i__2].r, z__[0].i = a[i__2].i;
- i__2 = i__ + i__ * d_dim1;
- z__[1].r = d__[i__2].r, z__[1].i = d__[i__2].i;
- i__2 = j + j * b_dim1;
- z__1.r = -b[i__2].r, z__1.i = -b[i__2].i;
- z__[2].r = z__1.r, z__[2].i = z__1.i;
- i__2 = j + j * e_dim1;
- z__1.r = -e[i__2].r, z__1.i = -e[i__2].i;
- z__[3].r = z__1.r, z__[3].i = z__1.i;
-
- /* Set up right hand side(s) */
-
- i__2 = i__ + j * c_dim1;
- rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
- i__2 = i__ + j * f_dim1;
- rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
-
- /* Solve Z * x = RHS */
-
- zgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- if (*ijob == 0) {
- zgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- z__1.r = scaloc, z__1.i = 0.;
- zscal_(m, &z__1, &c__[k * c_dim1 + 1], &c__1);
- z__1.r = scaloc, z__1.i = 0.;
- zscal_(m, &z__1, &f[k * f_dim1 + 1], &c__1);
- /* L10: */
- }
- *scale *= scaloc;
- }
- } else {
- zlatdf_(ijob, &c__2, z__, &c__2, rhs, rdsum, rdscal, ipiv,
- jpiv);
- }
-
- /* Unpack solution vector(s) */
-
- i__2 = i__ + j * c_dim1;
- c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
- i__2 = i__ + j * f_dim1;
- f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
-
- /* Substitute R(I, J) and L(I, J) into remaining equation. */
-
- if (i__ > 1) {
- z__1.r = -rhs[0].r, z__1.i = -rhs[0].i;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__2 = i__ - 1;
- zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &c__[j
- * c_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- zaxpy_(&i__2, &alpha, &d__[i__ * d_dim1 + 1], &c__1, &f[j
- * f_dim1 + 1], &c__1);
- }
- if (j < *n) {
- i__2 = *n - j;
- zaxpy_(&i__2, &rhs[1], &b[j + (j + 1) * b_dim1], ldb, &
- c__[i__ + (j + 1) * c_dim1], ldc);
- i__2 = *n - j;
- zaxpy_(&i__2, &rhs[1], &e[j + (j + 1) * e_dim1], lde, &f[
- i__ + (j + 1) * f_dim1], ldf);
- }
-
- /* L20: */
- }
- /* L30: */
- }
- } else {
-
- /* Solve transposed (I, J) - system: */
- /* A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J) */
- /* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */
- /* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 */
-
- *scale = 1.;
- scaloc = 1.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- for (j = *n; j >= 1; --j) {
-
- /* Build 2 by 2 system Z**H */
-
- d_cnjg(&z__1, &a[i__ + i__ * a_dim1]);
- z__[0].r = z__1.r, z__[0].i = z__1.i;
- d_cnjg(&z__2, &b[j + j * b_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- z__[1].r = z__1.r, z__[1].i = z__1.i;
- d_cnjg(&z__1, &d__[i__ + i__ * d_dim1]);
- z__[2].r = z__1.r, z__[2].i = z__1.i;
- d_cnjg(&z__2, &e[j + j * e_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- z__[3].r = z__1.r, z__[3].i = z__1.i;
-
-
- /* Set up right hand side(s) */
-
- i__2 = i__ + j * c_dim1;
- rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
- i__2 = i__ + j * f_dim1;
- rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
-
- /* Solve Z**H * x = RHS */
-
- zgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- zgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- z__1.r = scaloc, z__1.i = 0.;
- zscal_(m, &z__1, &c__[k * c_dim1 + 1], &c__1);
- z__1.r = scaloc, z__1.i = 0.;
- zscal_(m, &z__1, &f[k * f_dim1 + 1], &c__1);
- /* L40: */
- }
- *scale *= scaloc;
- }
-
- /* Unpack solution vector(s) */
-
- i__2 = i__ + j * c_dim1;
- c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
- i__2 = i__ + j * f_dim1;
- f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
-
- /* Substitute R(I, J) and L(I, J) into remaining equation. */
-
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- i__3 = i__ + k * f_dim1;
- i__4 = i__ + k * f_dim1;
- d_cnjg(&z__4, &b[k + j * b_dim1]);
- z__3.r = rhs[0].r * z__4.r - rhs[0].i * z__4.i, z__3.i =
- rhs[0].r * z__4.i + rhs[0].i * z__4.r;
- z__2.r = f[i__4].r + z__3.r, z__2.i = f[i__4].i + z__3.i;
- d_cnjg(&z__6, &e[k + j * e_dim1]);
- z__5.r = rhs[1].r * z__6.r - rhs[1].i * z__6.i, z__5.i =
- rhs[1].r * z__6.i + rhs[1].i * z__6.r;
- z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
- f[i__3].r = z__1.r, f[i__3].i = z__1.i;
- /* L50: */
- }
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- i__3 = k + j * c_dim1;
- i__4 = k + j * c_dim1;
- d_cnjg(&z__4, &a[i__ + k * a_dim1]);
- z__3.r = z__4.r * rhs[0].r - z__4.i * rhs[0].i, z__3.i =
- z__4.r * rhs[0].i + z__4.i * rhs[0].r;
- z__2.r = c__[i__4].r - z__3.r, z__2.i = c__[i__4].i -
- z__3.i;
- d_cnjg(&z__6, &d__[i__ + k * d_dim1]);
- z__5.r = z__6.r * rhs[1].r - z__6.i * rhs[1].i, z__5.i =
- z__6.r * rhs[1].i + z__6.i * rhs[1].r;
- z__1.r = z__2.r - z__5.r, z__1.i = z__2.i - z__5.i;
- c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
- /* L60: */
- }
-
- /* L70: */
- }
- /* L80: */
- }
- }
- return;
-
- /* End of ZTGSY2 */
-
- } /* ztgsy2_ */
|