|
- *> \brief <b> ZSYSV computes the solution to system of linear equations A * X = B for SY matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSYSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsysv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsysv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsysv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
- * LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSYSV computes the solution to a complex system of linear equations
- *> A * X = B,
- *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
- *> matrices.
- *>
- *> The diagonal pivoting method is used to factor A as
- *> A = U * D * U**T, if UPLO = 'U', or
- *> A = L * D * L**T, if UPLO = 'L',
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is symmetric and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
- *> used to solve the system of equations A * X = B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the block diagonal matrix D and the
- *> multipliers used to obtain the factor U or L from the
- *> factorization A = U*D*U**T or A = L*D*L**T as computed by
- *> ZSYTRF.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D, as
- *> determined by ZSYTRF. If IPIV(k) > 0, then rows and columns
- *> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
- *> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
- *> then rows and columns k-1 and -IPIV(k) were interchanged and
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
- *> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
- *> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
- *> diagonal block.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >= 1, and for best performance
- *> LWORK >= max(1,N*NB), where NB is the optimal blocksize for
- *> ZSYTRF.
- *> for LWORK < N, TRS will be done with Level BLAS 2
- *> for LWORK >= N, TRS will be done with Level BLAS 3
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
- *> has been completed, but the block diagonal matrix D is
- *> exactly singular, so the solution could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16SYsolve
- *
- * =====================================================================
- SUBROUTINE ZSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
- $ LWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER LWKOPT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZSYTRF, ZSYTRS, ZSYTRS2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- LWKOPT = 1
- ELSE
- CALL ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, -1, INFO )
- LWKOPT = INT( DBLE( WORK( 1 ) ) )
- END IF
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSYSV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Compute the factorization A = U*D*U**T or A = L*D*L**T.
- *
- CALL ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B, overwriting B with X.
- *
- IF ( LWORK.LT.N ) THEN
- *
- * Solve with TRS ( Use Level BLAS 2)
- *
- CALL ZSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
- *
- ELSE
- *
- * Solve with TRS2 ( Use Level BLAS 3)
- *
- CALL ZSYTRS2( UPLO,N,NRHS,A,LDA,IPIV,B,LDB,WORK,INFO )
- *
- END IF
- *
- END IF
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of ZSYSV
- *
- END
|