|
- *> \brief \b ZSPTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSPTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 AP( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSPTRI computes the inverse of a complex symmetric indefinite matrix
- *> A in packed storage using the factorization A = U*D*U**T or
- *> A = L*D*L**T computed by ZSPTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**T;
- *> = 'L': Lower triangular, form is A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> On entry, the block diagonal matrix D and the multipliers
- *> used to obtain the factor U or L as computed by ZSPTRF,
- *> stored as a packed triangular matrix.
- *>
- *> On exit, if INFO = 0, the (symmetric) inverse of the original
- *> matrix, stored as a packed triangular matrix. The j-th column
- *> of inv(A) is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
- *> if UPLO = 'L',
- *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by ZSPTRF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
- *> inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 AP( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE, ZERO
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
- $ ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
- COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- COMPLEX*16 ZDOTU
- EXTERNAL LSAME, ZDOTU
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZCOPY, ZSPMV, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSPTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Check that the diagonal matrix D is nonsingular.
- *
- IF( UPPER ) THEN
- *
- * Upper triangular storage: examine D from bottom to top
- *
- KP = N*( N+1 ) / 2
- DO 10 INFO = N, 1, -1
- IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
- $ RETURN
- KP = KP - INFO
- 10 CONTINUE
- ELSE
- *
- * Lower triangular storage: examine D from top to bottom.
- *
- KP = 1
- DO 20 INFO = 1, N
- IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
- $ RETURN
- KP = KP + N - INFO + 1
- 20 CONTINUE
- END IF
- INFO = 0
- *
- IF( UPPER ) THEN
- *
- * Compute inv(A) from the factorization A = U*D*U**T.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = 1
- KC = 1
- 30 CONTINUE
- *
- * If K > N, exit from loop.
- *
- IF( K.GT.N )
- $ GO TO 50
- *
- KCNEXT = KC + K
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- AP( KC+K-1 ) = ONE / AP( KC+K-1 )
- *
- * Compute column K of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
- $ 1 )
- AP( KC+K-1 ) = AP( KC+K-1 ) -
- $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = AP( KCNEXT+K-1 )
- AK = AP( KC+K-1 ) / T
- AKP1 = AP( KCNEXT+K ) / T
- AKKP1 = AP( KCNEXT+K-1 ) / T
- D = T*( AK*AKP1-ONE )
- AP( KC+K-1 ) = AKP1 / D
- AP( KCNEXT+K ) = AK / D
- AP( KCNEXT+K-1 ) = -AKKP1 / D
- *
- * Compute columns K and K+1 of the inverse.
- *
- IF( K.GT.1 ) THEN
- CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
- $ 1 )
- AP( KC+K-1 ) = AP( KC+K-1 ) -
- $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
- AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
- $ ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
- $ 1 )
- CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
- $ AP( KCNEXT ), 1 )
- AP( KCNEXT+K ) = AP( KCNEXT+K ) -
- $ ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
- END IF
- KSTEP = 2
- KCNEXT = KCNEXT + K + 1
- END IF
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- *
- * Interchange rows and columns K and KP in the leading
- * submatrix A(1:k+1,1:k+1)
- *
- KPC = ( KP-1 )*KP / 2 + 1
- CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
- KX = KPC + KP - 1
- DO 40 J = KP + 1, K - 1
- KX = KX + J - 1
- TEMP = AP( KC+J-1 )
- AP( KC+J-1 ) = AP( KX )
- AP( KX ) = TEMP
- 40 CONTINUE
- TEMP = AP( KC+K-1 )
- AP( KC+K-1 ) = AP( KPC+KP-1 )
- AP( KPC+KP-1 ) = TEMP
- IF( KSTEP.EQ.2 ) THEN
- TEMP = AP( KC+K+K-1 )
- AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
- AP( KC+K+KP-1 ) = TEMP
- END IF
- END IF
- *
- K = K + KSTEP
- KC = KCNEXT
- GO TO 30
- 50 CONTINUE
- *
- ELSE
- *
- * Compute inv(A) from the factorization A = L*D*L**T.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- NPP = N*( N+1 ) / 2
- K = N
- KC = NPP
- 60 CONTINUE
- *
- * If K < 1, exit from loop.
- *
- IF( K.LT.1 )
- $ GO TO 80
- *
- KCNEXT = KC - ( N-K+2 )
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Invert the diagonal block.
- *
- AP( KC ) = ONE / AP( KC )
- *
- * Compute column K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
- $ ZERO, AP( KC+1 ), 1 )
- AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
- $ 1 )
- END IF
- KSTEP = 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Invert the diagonal block.
- *
- T = AP( KCNEXT+1 )
- AK = AP( KCNEXT ) / T
- AKP1 = AP( KC ) / T
- AKKP1 = AP( KCNEXT+1 ) / T
- D = T*( AK*AKP1-ONE )
- AP( KCNEXT ) = AKP1 / D
- AP( KC ) = AK / D
- AP( KCNEXT+1 ) = -AKKP1 / D
- *
- * Compute columns K-1 and K of the inverse.
- *
- IF( K.LT.N ) THEN
- CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
- $ ZERO, AP( KC+1 ), 1 )
- AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
- $ 1 )
- AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
- $ ZDOTU( N-K, AP( KC+1 ), 1,
- $ AP( KCNEXT+2 ), 1 )
- CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
- CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
- $ ZERO, AP( KCNEXT+2 ), 1 )
- AP( KCNEXT ) = AP( KCNEXT ) -
- $ ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
- END IF
- KSTEP = 2
- KCNEXT = KCNEXT - ( N-K+3 )
- END IF
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K ) THEN
- *
- * Interchange rows and columns K and KP in the trailing
- * submatrix A(k-1:n,k-1:n)
- *
- KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
- IF( KP.LT.N )
- $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
- KX = KC + KP - K
- DO 70 J = K + 1, KP - 1
- KX = KX + N - J + 1
- TEMP = AP( KC+J-K )
- AP( KC+J-K ) = AP( KX )
- AP( KX ) = TEMP
- 70 CONTINUE
- TEMP = AP( KC )
- AP( KC ) = AP( KPC )
- AP( KPC ) = TEMP
- IF( KSTEP.EQ.2 ) THEN
- TEMP = AP( KC-N+K-1 )
- AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
- AP( KC-N+KP-1 ) = TEMP
- END IF
- END IF
- *
- K = K - KSTEP
- KC = KCNEXT
- GO TO 60
- 80 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZSPTRI
- *
- END
|