|
- *> \brief \b ZROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZROT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zrot.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zrot.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zrot.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, INCY, N
- * DOUBLE PRECISION C
- * COMPLEX*16 S
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 CX( * ), CY( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZROT applies a plane rotation, where the cos (C) is real and the
- *> sin (S) is complex, and the vectors CX and CY are complex.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of elements in the vectors CX and CY.
- *> \endverbatim
- *>
- *> \param[in,out] CX
- *> \verbatim
- *> CX is COMPLEX*16 array, dimension (N)
- *> On input, the vector X.
- *> On output, CX is overwritten with C*X + S*Y.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between successive values of CX. INCX <> 0.
- *> \endverbatim
- *>
- *> \param[in,out] CY
- *> \verbatim
- *> CY is COMPLEX*16 array, dimension (N)
- *> On input, the vector Y.
- *> On output, CY is overwritten with -CONJG(S)*X + C*Y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> The increment between successive values of CY. INCX <> 0.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is COMPLEX*16
- *> C and S define a rotation
- *> [ C S ]
- *> [ -conjg(S) C ]
- *> where C*C + S*CONJG(S) = 1.0.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INCX, INCY, N
- DOUBLE PRECISION C
- COMPLEX*16 S
- * ..
- * .. Array Arguments ..
- COMPLEX*16 CX( * ), CY( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER I, IX, IY
- COMPLEX*16 STEMP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG
- * ..
- * .. Executable Statements ..
- *
- IF( N.LE.0 )
- $ RETURN
- IF( INCX.EQ.1 .AND. INCY.EQ.1 )
- $ GO TO 20
- *
- * Code for unequal increments or equal increments not equal to 1
- *
- IX = 1
- IY = 1
- IF( INCX.LT.0 )
- $ IX = ( -N+1 )*INCX + 1
- IF( INCY.LT.0 )
- $ IY = ( -N+1 )*INCY + 1
- DO 10 I = 1, N
- STEMP = C*CX( IX ) + S*CY( IY )
- CY( IY ) = C*CY( IY ) - DCONJG( S )*CX( IX )
- CX( IX ) = STEMP
- IX = IX + INCX
- IY = IY + INCY
- 10 CONTINUE
- RETURN
- *
- * Code for both increments equal to 1
- *
- 20 CONTINUE
- DO 30 I = 1, N
- STEMP = C*CX( I ) + S*CY( I )
- CY( I ) = C*CY( I ) - DCONJG( S )*CX( I )
- CX( I ) = STEMP
- 30 CONTINUE
- RETURN
- END
|