|
- *> \brief \b ZPFTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZPFTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANSR, UPLO
- * INTEGER INFO, N
- * .. Array Arguments ..
- * COMPLEX*16 A( 0: * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZPFTRI computes the inverse of a complex Hermitian positive definite
- *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
- *> computed by ZPFTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> = 'N': The Normal TRANSR of RFP A is stored;
- *> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
- *> On entry, the Hermitian matrix A in RFP format. RFP format is
- *> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
- *> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
- *> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
- *> the Conjugate-transpose of RFP A as defined when
- *> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
- *> follows: If UPLO = 'U' the RFP A contains the nt elements of
- *> upper packed A. If UPLO = 'L' the RFP A contains the elements
- *> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
- *> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
- *> is odd. See the Note below for more details.
- *>
- *> On exit, the Hermitian inverse of the original matrix, in the
- *> same storage format.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the (i,i) element of the factor U or L is
- *> zero, and the inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Standard Packed Format when N is even.
- *> We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> conjugate-transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> conjugate-transpose of the last three columns of AP lower.
- *> To denote conjugate we place -- above the element. This covers the
- *> case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> -- -- --
- *> 03 04 05 33 43 53
- *> -- --
- *> 13 14 15 00 44 54
- *> --
- *> 23 24 25 10 11 55
- *>
- *> 33 34 35 20 21 22
- *> --
- *> 00 44 45 30 31 32
- *> -- --
- *> 01 11 55 40 41 42
- *> -- -- --
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> -- -- -- -- -- -- -- -- -- --
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> -- -- -- -- -- -- -- -- -- --
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> -- -- -- -- -- -- -- -- -- --
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We next consider Standard Packed Format when N is odd.
- *> We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> conjugate-transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> conjugate-transpose of the last two columns of AP lower.
- *> To denote conjugate we place -- above the element. This covers the
- *> case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> -- --
- *> 02 03 04 00 33 43
- *> --
- *> 12 13 14 10 11 44
- *>
- *> 22 23 24 20 21 22
- *> --
- *> 00 33 34 30 31 32
- *> -- --
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> -- -- -- -- -- -- -- -- --
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> -- -- -- -- -- -- -- -- --
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> -- -- -- -- -- -- -- -- --
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANSR, UPLO
- INTEGER INFO, N
- * .. Array Arguments ..
- COMPLEX*16 A( 0: * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- COMPLEX*16 CONE
- PARAMETER ( ONE = 1.D0, CONE = ( 1.D0, 0.D0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, NISODD, NORMALTRANSR
- INTEGER N1, N2, K
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZTFTRI, ZLAUUM, ZTRMM, ZHERK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MOD
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NORMALTRANSR = LSAME( TRANSR, 'N' )
- LOWER = LSAME( UPLO, 'L' )
- IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZPFTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Invert the triangular Cholesky factor U or L.
- *
- CALL ZTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- *
- * If N is odd, set NISODD = .TRUE.
- * If N is even, set K = N/2 and NISODD = .FALSE.
- *
- IF( MOD( N, 2 ).EQ.0 ) THEN
- K = N / 2
- NISODD = .FALSE.
- ELSE
- NISODD = .TRUE.
- END IF
- *
- * Set N1 and N2 depending on LOWER
- *
- IF( LOWER ) THEN
- N2 = N / 2
- N1 = N - N2
- ELSE
- N1 = N / 2
- N2 = N - N1
- END IF
- *
- * Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
- * inv(L)^C*inv(L). There are eight cases.
- *
- IF( NISODD ) THEN
- *
- * N is odd
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is odd and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
- * T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
- * T1 -> a(0), T2 -> a(n), S -> a(N1)
- *
- CALL ZLAUUM( 'L', N1, A( 0 ), N, INFO )
- CALL ZHERK( 'L', 'C', N1, N2, ONE, A( N1 ), N, ONE,
- $ A( 0 ), N )
- CALL ZTRMM( 'L', 'U', 'N', 'N', N2, N1, CONE, A( N ), N,
- $ A( N1 ), N )
- CALL ZLAUUM( 'U', N2, A( N ), N, INFO )
- *
- ELSE
- *
- * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
- * T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
- * T1 -> a(N2), T2 -> a(N1), S -> a(0)
- *
- CALL ZLAUUM( 'L', N1, A( N2 ), N, INFO )
- CALL ZHERK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
- $ A( N2 ), N )
- CALL ZTRMM( 'R', 'U', 'C', 'N', N1, N2, CONE, A( N1 ), N,
- $ A( 0 ), N )
- CALL ZLAUUM( 'U', N2, A( N1 ), N, INFO )
- *
- END IF
- *
- ELSE
- *
- * N is odd and TRANSR = 'C'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, TRANSPOSE, and N is odd
- * T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
- *
- CALL ZLAUUM( 'U', N1, A( 0 ), N1, INFO )
- CALL ZHERK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
- $ A( 0 ), N1 )
- CALL ZTRMM( 'R', 'L', 'N', 'N', N1, N2, CONE, A( 1 ), N1,
- $ A( N1*N1 ), N1 )
- CALL ZLAUUM( 'L', N2, A( 1 ), N1, INFO )
- *
- ELSE
- *
- * SRPA for UPPER, TRANSPOSE, and N is odd
- * T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
- *
- CALL ZLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
- CALL ZHERK( 'U', 'C', N1, N2, ONE, A( 0 ), N2, ONE,
- $ A( N2*N2 ), N2 )
- CALL ZTRMM( 'L', 'L', 'C', 'N', N2, N1, CONE, A( N1*N2 ),
- $ N2, A( 0 ), N2 )
- CALL ZLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * N is even
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is even and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
- * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
- * T1 -> a(1), T2 -> a(0), S -> a(k+1)
- *
- CALL ZLAUUM( 'L', K, A( 1 ), N+1, INFO )
- CALL ZHERK( 'L', 'C', K, K, ONE, A( K+1 ), N+1, ONE,
- $ A( 1 ), N+1 )
- CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, A( 0 ), N+1,
- $ A( K+1 ), N+1 )
- CALL ZLAUUM( 'U', K, A( 0 ), N+1, INFO )
- *
- ELSE
- *
- * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
- * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
- * T1 -> a(k+1), T2 -> a(k), S -> a(0)
- *
- CALL ZLAUUM( 'L', K, A( K+1 ), N+1, INFO )
- CALL ZHERK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
- $ A( K+1 ), N+1 )
- CALL ZTRMM( 'R', 'U', 'C', 'N', K, K, CONE, A( K ), N+1,
- $ A( 0 ), N+1 )
- CALL ZLAUUM( 'U', K, A( K ), N+1, INFO )
- *
- END IF
- *
- ELSE
- *
- * N is even and TRANSR = 'C'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, TRANSPOSE, and N is even (see paper)
- * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
- * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
- *
- CALL ZLAUUM( 'U', K, A( K ), K, INFO )
- CALL ZHERK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
- $ A( K ), K )
- CALL ZTRMM( 'R', 'L', 'N', 'N', K, K, CONE, A( 0 ), K,
- $ A( K*( K+1 ) ), K )
- CALL ZLAUUM( 'L', K, A( 0 ), K, INFO )
- *
- ELSE
- *
- * SRPA for UPPER, TRANSPOSE, and N is even (see paper)
- * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0),
- * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
- *
- CALL ZLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
- CALL ZHERK( 'U', 'C', K, K, ONE, A( 0 ), K, ONE,
- $ A( K*( K+1 ) ), K )
- CALL ZTRMM( 'L', 'L', 'C', 'N', K, K, CONE, A( K*K ), K,
- $ A( 0 ), K )
- CALL ZLAUUM( 'L', K, A( K*K ), K, INFO )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of ZPFTRI
- *
- END
|