|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__13 = 13;
- static integer c__15 = 15;
- static integer c_n1 = -1;
- static integer c__12 = 12;
- static integer c__14 = 14;
- static integer c__16 = 16;
- static logical c_false = FALSE_;
- static integer c__1 = 1;
- static integer c__3 = 3;
-
- /* > \brief \b ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
- hur decomposition. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLAQR4 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr4.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr4.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr4.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
- /* IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
-
- /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
- /* LOGICAL WANTT, WANTZ */
- /* COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLAQR4 implements one level of recursion for ZLAQR0. */
- /* > It is a complete implementation of the small bulge multi-shift */
- /* > QR algorithm. It may be called by ZLAQR0 and, for large enough */
- /* > deflation window size, it may be called by ZLAQR3. This */
- /* > subroutine is identical to ZLAQR0 except that it calls ZLAQR2 */
- /* > instead of ZLAQR3. */
- /* > */
- /* > ZLAQR4 computes the eigenvalues of a Hessenberg matrix H */
- /* > and, optionally, the matrices T and Z from the Schur decomposition */
- /* > H = Z T Z**H, where T is an upper triangular matrix (the */
- /* > Schur form), and Z is the unitary matrix of Schur vectors. */
- /* > */
- /* > Optionally Z may be postmultiplied into an input unitary */
- /* > matrix Q so that this routine can give the Schur factorization */
- /* > of a matrix A which has been reduced to the Hessenberg form H */
- /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > = .TRUE. : the full Schur form T is required; */
- /* > = .FALSE.: only eigenvalues are required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > = .TRUE. : the matrix of Schur vectors Z is required; */
- /* > = .FALSE.: Schur vectors are not required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > It is assumed that H is already upper triangular in rows */
- /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
- /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
- /* > previous call to ZGEBAL, and then passed to ZGEHRD when the */
- /* > matrix output by ZGEBAL is reduced to Hessenberg form. */
- /* > Otherwise, ILO and IHI should be set to 1 and N, */
- /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
- /* > If N = 0, then ILO = 1 and IHI = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is COMPLEX*16 array, dimension (LDH,N) */
- /* > On entry, the upper Hessenberg matrix H. */
- /* > On exit, if INFO = 0 and WANTT is .TRUE., then H */
- /* > contains the upper triangular matrix T from the Schur */
- /* > decomposition (the Schur form). If INFO = 0 and WANT is */
- /* > .FALSE., then the contents of H are unspecified on exit. */
- /* > (The output value of H when INFO > 0 is given under the */
- /* > description of INFO below.) */
- /* > */
- /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
- /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is COMPLEX*16 array, dimension (N) */
- /* > The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
- /* > in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
- /* > stored in the same order as on the diagonal of the Schur */
- /* > form returned in H, with W(i) = H(i,i). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. */
- /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX*16 array, dimension (LDZ,IHI) */
- /* > If WANTZ is .FALSE., then Z is not referenced. */
- /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
- /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
- /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
- /* > (The output value of Z when INFO > 0 is given under */
- /* > the description of INFO below.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
- /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension LWORK */
- /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
- /* > the optimal value for LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
- /* > is sufficient, but LWORK typically as large as 6*N may */
- /* > be required for optimal performance. A workspace query */
- /* > to determine the optimal workspace size is recommended. */
- /* > */
- /* > If LWORK = -1, then ZLAQR4 does a workspace query. */
- /* > In this case, ZLAQR4 checks the input parameters and */
- /* > estimates the optimal workspace size for the given */
- /* > values of N, ILO and IHI. The estimate is returned */
- /* > in WORK(1). No error message related to LWORK is */
- /* > issued by XERBLA. Neither H nor Z are accessed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > > 0: if INFO = i, ZLAQR4 failed to compute all of */
- /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
- /* > and WI contain those eigenvalues which have been */
- /* > successfully computed. (Failures are rare.) */
- /* > */
- /* > If INFO > 0 and WANT is .FALSE., then on exit, */
- /* > the remaining unconverged eigenvalues are the eigen- */
- /* > values of the upper Hessenberg matrix rows and */
- /* > columns ILO through INFO of the final, output */
- /* > value of H. */
- /* > */
- /* > If INFO > 0 and WANTT is .TRUE., then on exit */
- /* > */
- /* > (*) (initial value of H)*U = U*(final value of H) */
- /* > */
- /* > where U is a unitary matrix. The final */
- /* > value of H is upper Hessenberg and triangular in */
- /* > rows and columns INFO+1 through IHI. */
- /* > */
- /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
- /* > */
- /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
- /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
- /* > */
- /* > where U is the unitary matrix in (*) (regard- */
- /* > less of the value of WANTT.) */
- /* > */
- /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
- /* > accessed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* > 929--947, 2002. */
- /* > \n */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
- /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void zlaqr4_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
- doublecomplex *w, integer *iloz, integer *ihiz, doublecomplex *z__,
- integer *ldz, doublecomplex *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
- doublecomplex z__1, z__2, z__3, z__4, z__5;
-
- /* Local variables */
- integer ndec, ndfl, kbot, nmin;
- doublecomplex swap;
- integer ktop;
- doublecomplex zdum[1] /* was [1][1] */;
- integer kacc22, i__, k;
- doublereal s;
- integer itmax, nsmax, nwmax, kwtop;
- doublecomplex aa, bb, cc, dd;
- extern /* Subroutine */ void zlaqr2_(logical *, logical *, integer *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- integer *, integer *, doublecomplex *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *, integer *,
- doublecomplex *, integer *, integer *, doublecomplex *, integer *
- , doublecomplex *, integer *), zlaqr5_(logical *, logical *,
- integer *, integer *, integer *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, integer *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, doublecomplex *, integer *,
- integer *, doublecomplex *, integer *);
- integer ld, nh, nibble, it, ks, kt, ku, kv, ls, ns, nw;
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- char jbcmpz[2];
- doublecomplex rtdisc;
- integer nwupbd;
- logical sorted;
- extern /* Subroutine */ void zlahqr_(logical *, logical *, integer *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *, integer *, doublecomplex *, integer *, integer *),
- zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- integer lwkopt;
- doublecomplex tr2, det;
- integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ================================================================ */
-
-
- /* ==== Matrices of order NTINY or smaller must be processed by */
- /* . ZLAHQR because of insufficient subdiagonal scratch space. */
- /* . (This is a hard limit.) ==== */
-
- /* ==== Exceptional deflation windows: try to cure rare */
- /* . slow convergence by varying the size of the */
- /* . deflation window after KEXNW iterations. ==== */
-
- /* ==== Exceptional shifts: try to cure rare slow convergence */
- /* . with ad-hoc exceptional shifts every KEXSH iterations. */
- /* . ==== */
-
- /* ==== The constant WILK1 is used to form the exceptional */
- /* . shifts. ==== */
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* ==== Quick return for N = 0: nothing to do. ==== */
-
- if (*n == 0) {
- work[1].r = 1., work[1].i = 0.;
- return;
- }
-
- if (*n <= 15) {
-
- /* ==== Tiny matrices must use ZLAHQR. ==== */
-
- lwkopt = 1;
- if (*lwork != -1) {
- zlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
- iloz, ihiz, &z__[z_offset], ldz, info);
- }
- } else {
-
- /* ==== Use small bulge multi-shift QR with aggressive early */
- /* . deflation on larger-than-tiny matrices. ==== */
-
- /* ==== Hope for the best. ==== */
-
- *info = 0;
-
- /* ==== Set up job flags for ILAENV. ==== */
-
- if (*wantt) {
- *(unsigned char *)jbcmpz = 'S';
- } else {
- *(unsigned char *)jbcmpz = 'E';
- }
- if (*wantz) {
- *(unsigned char *)&jbcmpz[1] = 'V';
- } else {
- *(unsigned char *)&jbcmpz[1] = 'N';
- }
-
- /* ==== NWR = recommended deflation window size. At this */
- /* . point, N .GT. NTINY = 15, so there is enough */
- /* . subdiagonal workspace for NWR.GE.2 as required. */
- /* . (In fact, there is enough subdiagonal space for */
- /* . NWR.GE.4.) ==== */
-
- nwr = ilaenv_(&c__13, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
- (ftnlen)2);
- nwr = f2cmax(2,nwr);
- /* Computing MIN */
- i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
- nwr = f2cmin(i__1,nwr);
-
- /* ==== NSR = recommended number of simultaneous shifts. */
- /* . At this point N .GT. NTINY = 15, so there is at */
- /* . enough subdiagonal workspace for NSR to be even */
- /* . and greater than or equal to two as required. ==== */
-
- nsr = ilaenv_(&c__15, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
- (ftnlen)2);
- /* Computing MIN */
- i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
- *ilo;
- nsr = f2cmin(i__1,i__2);
- /* Computing MAX */
- i__1 = 2, i__2 = nsr - nsr % 2;
- nsr = f2cmax(i__1,i__2);
-
- /* ==== Estimate optimal workspace ==== */
-
- /* ==== Workspace query call to ZLAQR2 ==== */
-
- i__1 = nwr + 1;
- zlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
- ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset],
- ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1],
- &c_n1);
-
- /* ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ==== */
-
- /* Computing MAX */
- i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
- lwkopt = f2cmax(i__1,i__2);
-
- /* ==== Quick return in case of workspace query. ==== */
-
- if (*lwork == -1) {
- d__1 = (doublereal) lwkopt;
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return;
- }
-
- /* ==== ZLAHQR/ZLAQR0 crossover point ==== */
-
- nmin = ilaenv_(&c__12, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
- 6, (ftnlen)2);
- nmin = f2cmax(15,nmin);
-
- /* ==== Nibble crossover point ==== */
-
- nibble = ilaenv_(&c__14, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (
- ftnlen)6, (ftnlen)2);
- nibble = f2cmax(0,nibble);
-
- /* ==== Accumulate reflections during ttswp? Use block */
- /* . 2-by-2 structure during matrix-matrix multiply? ==== */
-
- kacc22 = ilaenv_(&c__16, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (
- ftnlen)6, (ftnlen)2);
- kacc22 = f2cmax(0,kacc22);
- kacc22 = f2cmin(2,kacc22);
-
- /* ==== NWMAX = the largest possible deflation window for */
- /* . which there is sufficient workspace. ==== */
-
- /* Computing MIN */
- i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
- nwmax = f2cmin(i__1,i__2);
- nw = nwmax;
-
- /* ==== NSMAX = the Largest number of simultaneous shifts */
- /* . for which there is sufficient workspace. ==== */
-
- /* Computing MIN */
- i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
- nsmax = f2cmin(i__1,i__2);
- nsmax -= nsmax % 2;
-
- /* ==== NDFL: an iteration count restarted at deflation. ==== */
-
- ndfl = 1;
-
- /* ==== ITMAX = iteration limit ==== */
-
- /* Computing MAX */
- i__1 = 10, i__2 = *ihi - *ilo + 1;
- itmax = 30 * f2cmax(i__1,i__2);
-
- /* ==== Last row and column in the active block ==== */
-
- kbot = *ihi;
-
- /* ==== Main Loop ==== */
-
- i__1 = itmax;
- for (it = 1; it <= i__1; ++it) {
-
- /* ==== Done when KBOT falls below ILO ==== */
-
- if (kbot < *ilo) {
- goto L80;
- }
-
- /* ==== Locate active block ==== */
-
- i__2 = *ilo + 1;
- for (k = kbot; k >= i__2; --k) {
- i__3 = k + (k - 1) * h_dim1;
- if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
- goto L20;
- }
- /* L10: */
- }
- k = *ilo;
- L20:
- ktop = k;
-
- /* ==== Select deflation window size: */
- /* . Typical Case: */
- /* . If possible and advisable, nibble the entire */
- /* . active block. If not, use size MIN(NWR,NWMAX) */
- /* . or MIN(NWR+1,NWMAX) depending upon which has */
- /* . the smaller corresponding subdiagonal entry */
- /* . (a heuristic). */
- /* . */
- /* . Exceptional Case: */
- /* . If there have been no deflations in KEXNW or */
- /* . more iterations, then vary the deflation window */
- /* . size. At first, because, larger windows are, */
- /* . in general, more powerful than smaller ones, */
- /* . rapidly increase the window to the maximum possible. */
- /* . Then, gradually reduce the window size. ==== */
-
- nh = kbot - ktop + 1;
- nwupbd = f2cmin(nh,nwmax);
- if (ndfl < 5) {
- nw = f2cmin(nwupbd,nwr);
- } else {
- /* Computing MIN */
- i__2 = nwupbd, i__3 = nw << 1;
- nw = f2cmin(i__2,i__3);
- }
- if (nw < nwmax) {
- if (nw >= nh - 1) {
- nw = nh;
- } else {
- kwtop = kbot - nw + 1;
- i__2 = kwtop + (kwtop - 1) * h_dim1;
- i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
- if ((d__1 = h__[i__2].r, abs(d__1)) + (d__2 = d_imag(&h__[
- kwtop + (kwtop - 1) * h_dim1]), abs(d__2)) > (
- d__3 = h__[i__3].r, abs(d__3)) + (d__4 = d_imag(&
- h__[kwtop - 1 + (kwtop - 2) * h_dim1]), abs(d__4))
- ) {
- ++nw;
- }
- }
- }
- if (ndfl < 5) {
- ndec = -1;
- } else if (ndec >= 0 || nw >= nwupbd) {
- ++ndec;
- if (nw - ndec < 2) {
- ndec = 0;
- }
- nw -= ndec;
- }
-
- /* ==== Aggressive early deflation: */
- /* . split workspace under the subdiagonal into */
- /* . - an nw-by-nw work array V in the lower */
- /* . left-hand-corner, */
- /* . - an NW-by-at-least-NW-but-more-is-better */
- /* . (NW-by-NHO) horizontal work array along */
- /* . the bottom edge, */
- /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
- /* . vertical work array along the left-hand-edge. */
- /* . ==== */
-
- kv = *n - nw + 1;
- kt = nw + 1;
- nho = *n - nw - 1 - kt + 1;
- kwv = nw + 2;
- nve = *n - nw - kwv + 1;
-
- /* ==== Aggressive early deflation ==== */
-
- zlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
- iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv
- + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
- h__[kwv + h_dim1], ldh, &work[1], lwork);
-
- /* ==== Adjust KBOT accounting for new deflations. ==== */
-
- kbot -= ld;
-
- /* ==== KS points to the shifts. ==== */
-
- ks = kbot - ls + 1;
-
- /* ==== Skip an expensive QR sweep if there is a (partly */
- /* . heuristic) reason to expect that many eigenvalues */
- /* . will deflate without it. Here, the QR sweep is */
- /* . skipped if many eigenvalues have just been deflated */
- /* . or if the remaining active block is small. */
-
- if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
- nmin,nwmax)) {
-
- /* ==== NS = nominal number of simultaneous shifts. */
- /* . This may be lowered (slightly) if ZLAQR2 */
- /* . did not provide that many shifts. ==== */
-
- /* Computing MIN */
- /* Computing MAX */
- i__4 = 2, i__5 = kbot - ktop;
- i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
- ns = f2cmin(i__2,i__3);
- ns -= ns % 2;
-
- /* ==== If there have been no deflations */
- /* . in a multiple of KEXSH iterations, */
- /* . then try exceptional shifts. */
- /* . Otherwise use shifts provided by */
- /* . ZLAQR2 above or from the eigenvalues */
- /* . of a trailing principal submatrix. ==== */
-
- if (ndfl % 6 == 0) {
- ks = kbot - ns + 1;
- i__2 = ks + 1;
- for (i__ = kbot; i__ >= i__2; i__ += -2) {
- i__3 = i__;
- i__4 = i__ + i__ * h_dim1;
- i__5 = i__ + (i__ - 1) * h_dim1;
- d__3 = ((d__1 = h__[i__5].r, abs(d__1)) + (d__2 =
- d_imag(&h__[i__ + (i__ - 1) * h_dim1]), abs(
- d__2))) * .75;
- z__1.r = h__[i__4].r + d__3, z__1.i = h__[i__4].i;
- w[i__3].r = z__1.r, w[i__3].i = z__1.i;
- i__3 = i__ - 1;
- i__4 = i__;
- w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
- /* L30: */
- }
- } else {
-
- /* ==== Got NS/2 or fewer shifts? Use ZLAHQR */
- /* . on a trailing principal submatrix to */
- /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
- /* . there is enough space below the subdiagonal */
- /* . to fit an NS-by-NS scratch array.) ==== */
-
- if (kbot - ks + 1 <= ns / 2) {
- ks = kbot - ns + 1;
- kt = *n - ns + 1;
- zlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
- h__[kt + h_dim1], ldh);
- zlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
- + h_dim1], ldh, &w[ks], &c__1, &c__1, zdum, &
- c__1, &inf);
- ks += inf;
-
- /* ==== In case of a rare QR failure use */
- /* . eigenvalues of the trailing 2-by-2 */
- /* . principal submatrix. Scale to avoid */
- /* . overflows, underflows and subnormals. */
- /* . (The scale factor S can not be zero, */
- /* . because H(KBOT,KBOT-1) is nonzero.) ==== */
-
- if (ks >= kbot) {
- i__2 = kbot - 1 + (kbot - 1) * h_dim1;
- i__3 = kbot + (kbot - 1) * h_dim1;
- i__4 = kbot - 1 + kbot * h_dim1;
- i__5 = kbot + kbot * h_dim1;
- s = (d__1 = h__[i__2].r, abs(d__1)) + (d__2 =
- d_imag(&h__[kbot - 1 + (kbot - 1) *
- h_dim1]), abs(d__2)) + ((d__3 = h__[i__3]
- .r, abs(d__3)) + (d__4 = d_imag(&h__[kbot
- + (kbot - 1) * h_dim1]), abs(d__4))) + ((
- d__5 = h__[i__4].r, abs(d__5)) + (d__6 =
- d_imag(&h__[kbot - 1 + kbot * h_dim1]),
- abs(d__6))) + ((d__7 = h__[i__5].r, abs(
- d__7)) + (d__8 = d_imag(&h__[kbot + kbot *
- h_dim1]), abs(d__8)));
- i__2 = kbot - 1 + (kbot - 1) * h_dim1;
- z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
- s;
- aa.r = z__1.r, aa.i = z__1.i;
- i__2 = kbot + (kbot - 1) * h_dim1;
- z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
- s;
- cc.r = z__1.r, cc.i = z__1.i;
- i__2 = kbot - 1 + kbot * h_dim1;
- z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
- s;
- bb.r = z__1.r, bb.i = z__1.i;
- i__2 = kbot + kbot * h_dim1;
- z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
- s;
- dd.r = z__1.r, dd.i = z__1.i;
- z__2.r = aa.r + dd.r, z__2.i = aa.i + dd.i;
- z__1.r = z__2.r / 2., z__1.i = z__2.i / 2.;
- tr2.r = z__1.r, tr2.i = z__1.i;
- z__3.r = aa.r - tr2.r, z__3.i = aa.i - tr2.i;
- z__4.r = dd.r - tr2.r, z__4.i = dd.i - tr2.i;
- z__2.r = z__3.r * z__4.r - z__3.i * z__4.i,
- z__2.i = z__3.r * z__4.i + z__3.i *
- z__4.r;
- z__5.r = bb.r * cc.r - bb.i * cc.i, z__5.i = bb.r
- * cc.i + bb.i * cc.r;
- z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
- z__5.i;
- det.r = z__1.r, det.i = z__1.i;
- z__2.r = -det.r, z__2.i = -det.i;
- z_sqrt(&z__1, &z__2);
- rtdisc.r = z__1.r, rtdisc.i = z__1.i;
- i__2 = kbot - 1;
- z__2.r = tr2.r + rtdisc.r, z__2.i = tr2.i +
- rtdisc.i;
- z__1.r = s * z__2.r, z__1.i = s * z__2.i;
- w[i__2].r = z__1.r, w[i__2].i = z__1.i;
- i__2 = kbot;
- z__2.r = tr2.r - rtdisc.r, z__2.i = tr2.i -
- rtdisc.i;
- z__1.r = s * z__2.r, z__1.i = s * z__2.i;
- w[i__2].r = z__1.r, w[i__2].i = z__1.i;
-
- ks = kbot - 1;
- }
- }
-
- if (kbot - ks + 1 > ns) {
-
- /* ==== Sort the shifts (Helps a little) ==== */
-
- sorted = FALSE_;
- i__2 = ks + 1;
- for (k = kbot; k >= i__2; --k) {
- if (sorted) {
- goto L60;
- }
- sorted = TRUE_;
- i__3 = k - 1;
- for (i__ = ks; i__ <= i__3; ++i__) {
- i__4 = i__;
- i__5 = i__ + 1;
- if ((d__1 = w[i__4].r, abs(d__1)) + (d__2 =
- d_imag(&w[i__]), abs(d__2)) < (d__3 =
- w[i__5].r, abs(d__3)) + (d__4 =
- d_imag(&w[i__ + 1]), abs(d__4))) {
- sorted = FALSE_;
- i__4 = i__;
- swap.r = w[i__4].r, swap.i = w[i__4].i;
- i__4 = i__;
- i__5 = i__ + 1;
- w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
- .i;
- i__4 = i__ + 1;
- w[i__4].r = swap.r, w[i__4].i = swap.i;
- }
- /* L40: */
- }
- /* L50: */
- }
- L60:
- ;
- }
- }
-
- /* ==== If there are only two shifts, then use */
- /* . only one. ==== */
-
- if (kbot - ks + 1 == 2) {
- i__2 = kbot;
- i__3 = kbot + kbot * h_dim1;
- z__2.r = w[i__2].r - h__[i__3].r, z__2.i = w[i__2].i -
- h__[i__3].i;
- z__1.r = z__2.r, z__1.i = z__2.i;
- i__4 = kbot - 1;
- i__5 = kbot + kbot * h_dim1;
- z__4.r = w[i__4].r - h__[i__5].r, z__4.i = w[i__4].i -
- h__[i__5].i;
- z__3.r = z__4.r, z__3.i = z__4.i;
- if ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1),
- abs(d__2)) < (d__3 = z__3.r, abs(d__3)) + (d__4 =
- d_imag(&z__3), abs(d__4))) {
- i__2 = kbot - 1;
- i__3 = kbot;
- w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
- } else {
- i__2 = kbot;
- i__3 = kbot - 1;
- w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
- }
- }
-
- /* ==== Use up to NS of the the smallest magnitude */
- /* . shifts. If there aren't NS shifts available, */
- /* . then use them all, possibly dropping one to */
- /* . make the number of shifts even. ==== */
-
- /* Computing MIN */
- i__2 = ns, i__3 = kbot - ks + 1;
- ns = f2cmin(i__2,i__3);
- ns -= ns % 2;
- ks = kbot - ns + 1;
-
- /* ==== Small-bulge multi-shift QR sweep: */
- /* . split workspace under the subdiagonal into */
- /* . - a KDU-by-KDU work array U in the lower */
- /* . left-hand-corner, */
- /* . - a KDU-by-at-least-KDU-but-more-is-better */
- /* . (KDU-by-NHo) horizontal work array WH along */
- /* . the bottom edge, */
- /* . - and an at-least-KDU-but-more-is-better-by-KDU */
- /* . (NVE-by-KDU) vertical work WV arrow along */
- /* . the left-hand-edge. ==== */
-
- kdu = ns << 1;
- ku = *n - kdu + 1;
- kwh = kdu + 1;
- nho = *n - kdu - 3 - (kdu + 1) + 1;
- kwv = kdu + 4;
- nve = *n - kdu - kwv + 1;
-
- /* ==== Small-bulge multi-shift QR sweep ==== */
-
- zlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
- h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
- work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
- kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1],
- ldh);
- }
-
- /* ==== Note progress (or the lack of it). ==== */
-
- if (ld > 0) {
- ndfl = 1;
- } else {
- ++ndfl;
- }
-
- /* ==== End of main loop ==== */
- /* L70: */
- }
-
- /* ==== Iteration limit exceeded. Set INFO to show where */
- /* . the problem occurred and exit. ==== */
-
- *info = kbot;
- L80:
- ;
- }
-
- /* ==== Return the optimal value of LWORK. ==== */
-
- d__1 = (doublereal) lwkopt;
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
-
- /* ==== End of ZLAQR4 ==== */
-
- return;
- } /* zlaqr4_ */
|