|
- *> \brief \b ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLANGB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
- * WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER KL, KU, LDAB, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION WORK( * )
- * COMPLEX*16 AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLANGB returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of an
- *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
- *> \endverbatim
- *>
- *> \return ZLANGB
- *> \verbatim
- *>
- *> ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in ZLANGB as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, ZLANGB is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of sub-diagonals of the matrix A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of super-diagonals of the matrix A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB,N)
- *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
- *> column of A is stored in the j-th column of the array AB as
- *> follows:
- *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KL+KU+1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
- *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
- *> referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16GBauxiliary
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
- $ WORK )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER KL, KU, LDAB, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION WORK( * )
- COMPLEX*16 AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, K, L
- DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLASSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 ) THEN
- VALUE = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- VALUE = ZERO
- DO 20 J = 1, N
- DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
- TEMP = ABS( AB( I, J ) )
- IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
- 10 CONTINUE
- 20 CONTINUE
- ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
- *
- * Find norm1(A).
- *
- VALUE = ZERO
- DO 40 J = 1, N
- SUM = ZERO
- DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
- SUM = SUM + ABS( AB( I, J ) )
- 30 CONTINUE
- IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 40 CONTINUE
- ELSE IF( LSAME( NORM, 'I' ) ) THEN
- *
- * Find normI(A).
- *
- DO 50 I = 1, N
- WORK( I ) = ZERO
- 50 CONTINUE
- DO 70 J = 1, N
- K = KU + 1 - J
- DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
- WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
- 60 CONTINUE
- 70 CONTINUE
- VALUE = ZERO
- DO 80 I = 1, N
- TEMP = WORK( I )
- IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
- 80 CONTINUE
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- *
- SCALE = ZERO
- SUM = ONE
- DO 90 J = 1, N
- L = MAX( 1, J-KU )
- K = KU + 1 - J + L
- CALL ZLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
- 90 CONTINUE
- VALUE = SCALE*SQRT( SUM )
- END IF
- *
- ZLANGB = VALUE
- RETURN
- *
- * End of ZLANGB
- *
- END
|