|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZLAHEF_AA */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLAHEF_AA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_
- aa.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_
- aa.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_
- aa.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
- /* H, LDH, WORK ) */
-
- /* CHARACTER UPLO */
- /* INTEGER J1, M, NB, LDA, LDH */
- /* INTEGER IPIV( * ) */
- /* COMPLEX*16 A( LDA, * ), H( LDH, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAHEF_AA factorizes a panel of a complex hermitian matrix A using */
- /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
- /* > when UPLO is U, or a set of NB columns when UPLO is L. */
- /* > */
- /* > In order to factorize the panel, the Aasen's algorithm requires the */
- /* > last row, or column, of the previous panel. The first row, or column, */
- /* > of A is set to be the first row, or column, of an identity matrix, */
- /* > which is used to factorize the first panel. */
- /* > */
- /* > The resulting J-th row of U, or J-th column of L, is stored in the */
- /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
- /* > the diagonal and subdiagonal of A are overwritten by those of T. */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] J1 */
- /* > \verbatim */
- /* > J1 is INTEGER */
- /* > The location of the first row, or column, of the panel */
- /* > within the submatrix of A, passed to this routine, e.g., */
- /* > when called by ZHETRF_AA, for the first panel, J1 is 1, */
- /* > while for the remaining panels, J1 is 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The dimension of the submatrix. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The dimension of the panel to be facotorized. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,M) for */
- /* > the first panel, while dimension (LDA,M+1) for the */
- /* > remaining panels. */
- /* > */
- /* > On entry, A contains the last row, or column, of */
- /* > the previous panel, and the trailing submatrix of A */
- /* > to be factorized, except for the first panel, only */
- /* > the panel is passed. */
- /* > */
- /* > On exit, the leading panel is factorized. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > Details of the row and column interchanges, */
- /* > the row and column k were interchanged with the row and */
- /* > column IPIV(k). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is COMPLEX*16 workspace, dimension (LDH,NB). */
- /* > */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 workspace, dimension (M). */
- /* > \endverbatim */
- /* > */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup complex16HEcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void zlahef_aa_(char *uplo, integer *j1, integer *m, integer
- *nb, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *
- h__, integer *ldh, doublecomplex *work)
- {
- /* System generated locals */
- integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
- doublereal d__1;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- integer j, k;
- doublecomplex alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- integer i1, k1, i2;
- extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
- integer *, doublecomplex *, integer *), zaxpy_(integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *);
- integer mj;
- extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
- ;
- extern integer izamax_(integer *, doublecomplex *, integer *);
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- doublecomplex piv;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --work;
-
- /* Function Body */
- j = 1;
-
- /* K1 is the first column of the panel to be factorized */
- /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
-
- k1 = 2 - *j1 + 1;
-
- if (lsame_(uplo, "U")) {
-
- /* ..................................................... */
- /* Factorize A as U**T*D*U using the upper triangle of A */
- /* ..................................................... */
-
- L10:
- if (j > f2cmin(*m,*nb)) {
- goto L20;
- }
-
- /* K is the column to be factorized */
- /* when being called from ZHETRF_AA, */
- /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
- /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
-
- k = *j1 + j - 1;
- if (j == *m) {
-
- /* Only need to compute T(J, J) */
-
- mj = 1;
- } else {
- mj = *m - j + 1;
- }
-
- /* H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J), */
- /* where H(J:N, J) has been initialized to be A(J, J:N) */
-
- if (k > 2) {
-
- /* K is the column to be factorized */
- /* > for the first block column, K is J, skipping the first two */
- /* columns */
- /* > for the rest of the columns, K is J+1, skipping only the */
- /* first column */
-
- i__1 = j - k1;
- zlacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
- i__1 = j - k1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &mj, &i__1, &z__1, &h__[j + k1 * h_dim1],
- ldh, &a[j * a_dim1 + 1], &c__1, &c_b2, &h__[j + j *
- h_dim1], &c__1);
- i__1 = j - k1;
- zlacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
- }
-
- /* Copy H(i:n, i) into WORK */
-
- zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
-
- if (j > k1) {
-
- /* Compute WORK := WORK - L(J-1, J:N) * T(J-1,J), */
- /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N) */
-
- d_cnjg(&z__2, &a[k - 1 + j * a_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- alpha.r = z__1.r, alpha.i = z__1.i;
- zaxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
- }
-
- /* Set A(J, J) = T(J, J) */
-
- i__1 = k + j * a_dim1;
- d__1 = work[1].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
-
- if (j < *m) {
-
- /* Compute WORK(2:N) = T(J, J) L(J, (J+1):N) */
- /* where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N) */
-
- if (k > 1) {
- i__1 = k + j * a_dim1;
- z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__1 = *m - j;
- zaxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
- work[2], &c__1);
- }
-
- /* Find f2cmax(|WORK(2:n)|) */
-
- i__1 = *m - j;
- i2 = izamax_(&i__1, &work[2], &c__1) + 1;
- i__1 = i2;
- piv.r = work[i__1].r, piv.i = work[i__1].i;
-
- /* Apply hermitian pivot */
-
- if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
-
- /* Swap WORK(I1) and WORK(I2) */
-
- i1 = 2;
- i__1 = i2;
- i__2 = i1;
- work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
- i__1 = i1;
- work[i__1].r = piv.r, work[i__1].i = piv.i;
-
- /* Swap A(I1, I1+1:N) with A(I1+1:N, I2) */
-
- i1 = i1 + j - 1;
- i2 = i2 + j - 1;
- i__1 = i2 - i1 - 1;
- zswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
- j1 + i1 + i2 * a_dim1], &c__1);
- i__1 = i2 - i1;
- zlacgv_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda);
- i__1 = i2 - i1 - 1;
- zlacgv_(&i__1, &a[*j1 + i1 + i2 * a_dim1], &c__1);
-
- /* Swap A(I1, I2+1:N) with A(I2, I2+1:N) */
-
- if (i2 < *m) {
- i__1 = *m - i2;
- zswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
- a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
- }
-
- /* Swap A(I1, I1) with A(I2,I2) */
-
- i__1 = i1 + *j1 - 1 + i1 * a_dim1;
- piv.r = a[i__1].r, piv.i = a[i__1].i;
- i__1 = *j1 + i1 - 1 + i1 * a_dim1;
- i__2 = *j1 + i2 - 1 + i2 * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = *j1 + i2 - 1 + i2 * a_dim1;
- a[i__1].r = piv.r, a[i__1].i = piv.i;
-
- /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
-
- i__1 = i1 - 1;
- zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
- ipiv[i1] = i2;
-
- if (i1 > k1 - 1) {
-
- /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
- /* skipping the first column */
-
- i__1 = i1 - k1 + 1;
- zswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
- + 1], &c__1);
- }
- } else {
- ipiv[j + 1] = j + 1;
- }
-
- /* Set A(J, J+1) = T(J, J+1) */
-
- i__1 = k + (j + 1) * a_dim1;
- a[i__1].r = work[2].r, a[i__1].i = work[2].i;
-
- if (j < *nb) {
-
- /* Copy A(J+1:N, J+1) into H(J:N, J), */
-
- i__1 = *m - j;
- zcopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
- (j + 1) * h_dim1], &c__1);
- }
-
- /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
- /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
-
- if (j < *m - 1) {
- i__1 = k + (j + 1) * a_dim1;
- if (a[i__1].r != 0. || a[i__1].i != 0.) {
- z_div(&z__1, &c_b2, &a[k + (j + 1) * a_dim1]);
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__1 = *m - j - 1;
- zcopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
- lda);
- i__1 = *m - j - 1;
- zscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
- } else {
- i__1 = *m - j - 1;
- zlaset_("Full", &c__1, &i__1, &c_b1, &c_b1, &a[k + (j + 2)
- * a_dim1], lda);
- }
- }
- }
- ++j;
- goto L10;
- L20:
-
- ;
- } else {
-
- /* ..................................................... */
- /* Factorize A as L*D*L**T using the lower triangle of A */
- /* ..................................................... */
-
- L30:
- if (j > f2cmin(*m,*nb)) {
- goto L40;
- }
-
- /* K is the column to be factorized */
- /* when being called from ZHETRF_AA, */
- /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
- /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
-
- k = *j1 + j - 1;
- if (j == *m) {
-
- /* Only need to compute T(J, J) */
-
- mj = 1;
- } else {
- mj = *m - j + 1;
- }
-
- /* H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T, */
- /* where H(J:N, J) has been initialized to be A(J:N, J) */
-
- if (k > 2) {
-
- /* K is the column to be factorized */
- /* > for the first block column, K is J, skipping the first two */
- /* columns */
- /* > for the rest of the columns, K is J+1, skipping only the */
- /* first column */
-
- i__1 = j - k1;
- zlacgv_(&i__1, &a[j + a_dim1], lda);
- i__1 = j - k1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &mj, &i__1, &z__1, &h__[j + k1 * h_dim1],
- ldh, &a[j + a_dim1], lda, &c_b2, &h__[j + j * h_dim1], &
- c__1);
- i__1 = j - k1;
- zlacgv_(&i__1, &a[j + a_dim1], lda);
- }
-
- /* Copy H(J:N, J) into WORK */
-
- zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
-
- if (j > k1) {
-
- /* Compute WORK := WORK - L(J:N, J-1) * T(J-1,J), */
- /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
-
- d_cnjg(&z__2, &a[j + (k - 1) * a_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- alpha.r = z__1.r, alpha.i = z__1.i;
- zaxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
- c__1);
- }
-
- /* Set A(J, J) = T(J, J) */
-
- i__1 = j + k * a_dim1;
- d__1 = work[1].r;
- a[i__1].r = d__1, a[i__1].i = 0.;
-
- if (j < *m) {
-
- /* Compute WORK(2:N) = T(J, J) L((J+1):N, J) */
- /* where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J) */
-
- if (k > 1) {
- i__1 = j + k * a_dim1;
- z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__1 = *m - j;
- zaxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
- work[2], &c__1);
- }
-
- /* Find f2cmax(|WORK(2:n)|) */
-
- i__1 = *m - j;
- i2 = izamax_(&i__1, &work[2], &c__1) + 1;
- i__1 = i2;
- piv.r = work[i__1].r, piv.i = work[i__1].i;
-
- /* Apply hermitian pivot */
-
- if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
-
- /* Swap WORK(I1) and WORK(I2) */
-
- i1 = 2;
- i__1 = i2;
- i__2 = i1;
- work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
- i__1 = i1;
- work[i__1].r = piv.r, work[i__1].i = piv.i;
-
- /* Swap A(I1+1:N, I1) with A(I2, I1+1:N) */
-
- i1 = i1 + j - 1;
- i2 = i2 + j - 1;
- i__1 = i2 - i1 - 1;
- zswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
- i2 + (*j1 + i1) * a_dim1], lda);
- i__1 = i2 - i1;
- zlacgv_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1);
- i__1 = i2 - i1 - 1;
- zlacgv_(&i__1, &a[i2 + (*j1 + i1) * a_dim1], lda);
-
- /* Swap A(I2+1:N, I1) with A(I2+1:N, I2) */
-
- if (i2 < *m) {
- i__1 = *m - i2;
- zswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
- &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
- }
-
- /* Swap A(I1, I1) with A(I2, I2) */
-
- i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
- piv.r = a[i__1].r, piv.i = a[i__1].i;
- i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
- i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
- a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
- i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
- a[i__1].r = piv.r, a[i__1].i = piv.i;
-
- /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
-
- i__1 = i1 - 1;
- zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
- ipiv[i1] = i2;
-
- if (i1 > k1 - 1) {
-
- /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
- /* skipping the first column */
-
- i__1 = i1 - k1 + 1;
- zswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
- }
- } else {
- ipiv[j + 1] = j + 1;
- }
-
- /* Set A(J+1, J) = T(J+1, J) */
-
- i__1 = j + 1 + k * a_dim1;
- a[i__1].r = work[2].r, a[i__1].i = work[2].i;
-
- if (j < *nb) {
-
- /* Copy A(J+1:N, J+1) into H(J+1:N, J), */
-
- i__1 = *m - j;
- zcopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
- + (j + 1) * h_dim1], &c__1);
- }
-
- /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
- /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
-
- if (j < *m - 1) {
- i__1 = j + 1 + k * a_dim1;
- if (a[i__1].r != 0. || a[i__1].i != 0.) {
- z_div(&z__1, &c_b2, &a[j + 1 + k * a_dim1]);
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__1 = *m - j - 1;
- zcopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
- c__1);
- i__1 = *m - j - 1;
- zscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
- } else {
- i__1 = *m - j - 1;
- zlaset_("Full", &i__1, &c__1, &c_b1, &c_b1, &a[j + 2 + k *
- a_dim1], lda);
- }
- }
- }
- ++j;
- goto L30;
- L40:
- ;
- }
- return;
-
- /* End of ZLAHEF_AA */
-
- } /* zlahef_aa__ */
|