|
- *> \brief \b ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLABRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
- * LDY )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDX, LDY, M, N, NB
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * )
- * COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
- * $ Y( LDY, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLABRD reduces the first NB rows and columns of a complex general
- *> m by n matrix A to upper or lower real bidiagonal form by a unitary
- *> transformation Q**H * A * P, and returns the matrices X and Y which
- *> are needed to apply the transformation to the unreduced part of A.
- *>
- *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
- *> bidiagonal form.
- *>
- *> This is an auxiliary routine called by ZGEBRD
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows in the matrix A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns in the matrix A.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The number of leading rows and columns of A to be reduced.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the m by n general matrix to be reduced.
- *> On exit, the first NB rows and columns of the matrix are
- *> overwritten; the rest of the array is unchanged.
- *> If m >= n, elements on and below the diagonal in the first NB
- *> columns, with the array TAUQ, represent the unitary
- *> matrix Q as a product of elementary reflectors; and
- *> elements above the diagonal in the first NB rows, with the
- *> array TAUP, represent the unitary matrix P as a product
- *> of elementary reflectors.
- *> If m < n, elements below the diagonal in the first NB
- *> columns, with the array TAUQ, represent the unitary
- *> matrix Q as a product of elementary reflectors, and
- *> elements on and above the diagonal in the first NB rows,
- *> with the array TAUP, represent the unitary matrix P as
- *> a product of elementary reflectors.
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (NB)
- *> The diagonal elements of the first NB rows and columns of
- *> the reduced matrix. D(i) = A(i,i).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (NB)
- *> The off-diagonal elements of the first NB rows and columns of
- *> the reduced matrix.
- *> \endverbatim
- *>
- *> \param[out] TAUQ
- *> \verbatim
- *> TAUQ is COMPLEX*16 array, dimension (NB)
- *> The scalar factors of the elementary reflectors which
- *> represent the unitary matrix Q. See Further Details.
- *> \endverbatim
- *>
- *> \param[out] TAUP
- *> \verbatim
- *> TAUP is COMPLEX*16 array, dimension (NB)
- *> The scalar factors of the elementary reflectors which
- *> represent the unitary matrix P. See Further Details.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NB)
- *> The m-by-nb matrix X required to update the unreduced part
- *> of A.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] Y
- *> \verbatim
- *> Y is COMPLEX*16 array, dimension (LDY,NB)
- *> The n-by-nb matrix Y required to update the unreduced part
- *> of A.
- *> \endverbatim
- *>
- *> \param[in] LDY
- *> \verbatim
- *> LDY is INTEGER
- *> The leading dimension of the array Y. LDY >= max(1,N).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrices Q and P are represented as products of elementary
- *> reflectors:
- *>
- *> Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
- *>
- *> Each H(i) and G(i) has the form:
- *>
- *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
- *>
- *> where tauq and taup are complex scalars, and v and u are complex
- *> vectors.
- *>
- *> If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
- *> A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
- *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
- *>
- *> If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
- *> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
- *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
- *>
- *> The elements of the vectors v and u together form the m-by-nb matrix
- *> V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
- *> the transformation to the unreduced part of the matrix, using a block
- *> update of the form: A := A - V*Y**H - X*U**H.
- *>
- *> The contents of A on exit are illustrated by the following examples
- *> with nb = 2:
- *>
- *> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
- *>
- *> ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
- *> ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
- *> ( v1 v2 a a a ) ( v1 1 a a a a )
- *> ( v1 v2 a a a ) ( v1 v2 a a a a )
- *> ( v1 v2 a a a ) ( v1 v2 a a a a )
- *> ( v1 v2 a a a )
- *>
- *> where a denotes an element of the original matrix which is unchanged,
- *> vi denotes an element of the vector defining H(i), and ui an element
- *> of the vector defining G(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
- $ LDY )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDX, LDY, M, N, NB
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
- $ Y( LDY, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I
- COMPLEX*16 ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGEMV, ZLACGV, ZLARFG, ZSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
- *
- IF( M.GE.N ) THEN
- *
- * Reduce to upper bidiagonal form
- *
- DO 10 I = 1, NB
- *
- * Update A(i:m,i)
- *
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
- *
- * Generate reflection Q(i) to annihilate A(i+1:m,i)
- *
- ALPHA = A( I, I )
- CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
- $ TAUQ( I ) )
- D( I ) = DBLE( ALPHA )
- IF( I.LT.N ) THEN
- A( I, I ) = ONE
- *
- * Compute Y(i+1:n,i)
- *
- CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
- $ A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
- $ Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
- $ A( I, 1 ), LDA, A( I, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
- $ X( I, 1 ), LDX, A( I, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
- $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
- $ Y( I+1, I ), 1 )
- CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
- *
- * Update A(i,i+1:n)
- *
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- CALL ZLACGV( I, A( I, 1 ), LDA )
- CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
- CALL ZLACGV( I, A( I, 1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
- $ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
- $ A( I, I+1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- *
- * Generate reflection P(i) to annihilate A(i,i+2:n)
- *
- ALPHA = A( I, I+1 )
- CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
- $ TAUP( I ) )
- E( I ) = DBLE( ALPHA )
- A( I, I+1 ) = ONE
- *
- * Compute X(i+1:m,i)
- *
- CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
- $ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
- $ X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- END IF
- 10 CONTINUE
- ELSE
- *
- * Reduce to lower bidiagonal form
- *
- DO 20 I = 1, NB
- *
- * Update A(i,i:n)
- *
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
- $ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
- $ LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- *
- * Generate reflection P(i) to annihilate A(i,i+1:n)
- *
- ALPHA = A( I, I )
- CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
- $ TAUP( I ) )
- D( I ) = DBLE( ALPHA )
- IF( I.LT.M ) THEN
- A( I, I ) = ONE
- *
- * Compute X(i+1:m,i)
- *
- CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
- $ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
- $ X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- *
- * Update A(i+1:m,i)
- *
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
- *
- * Generate reflection Q(i) to annihilate A(i+2:m,i)
- *
- ALPHA = A( I+1, I )
- CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
- $ TAUQ( I ) )
- E( I ) = DBLE( ALPHA )
- A( I+1, I ) = ONE
- *
- * Compute Y(i+1:n,i)
- *
- CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
- $ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
- $ Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
- $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
- $ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
- $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
- $ Y( I+1, I ), 1 )
- CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
- ELSE
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- END IF
- 20 CONTINUE
- END IF
- RETURN
- *
- * End of ZLABRD
- *
- END
|