|
- *> \brief \b ZLA_LIN_BERR computes a component-wise relative backward error.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLA_LIN_BERR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_lin_berr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_lin_berr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_lin_berr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
- *
- * .. Scalar Arguments ..
- * INTEGER N, NZ, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
- * COMPLEX*16 RES( N, NRHS )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLA_LIN_BERR computes componentwise relative backward error from
- *> the formula
- *> max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
- *> where abs(Z) is the componentwise absolute value of the matrix
- *> or vector Z.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NZ
- *> \verbatim
- *> NZ is INTEGER
- *> We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
- *> guard against spuriously zero residuals. Default value is N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices AYB, RES, and BERR. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] RES
- *> \verbatim
- *> RES is COMPLEX*16 array, dimension (N,NRHS)
- *> The residual matrix, i.e., the matrix R in the relative backward
- *> error formula above.
- *> \endverbatim
- *>
- *> \param[in] AYB
- *> \verbatim
- *> AYB is DOUBLE PRECISION array, dimension (N, NRHS)
- *> The denominator in the relative backward error formula above, i.e.,
- *> the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
- *> are from iterative refinement (see zla_gerfsx_extended.f).
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error from the formula above.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER N, NZ, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
- COMPLEX*16 RES( N, NRHS )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- DOUBLE PRECISION TMP
- INTEGER I, J
- COMPLEX*16 CDUM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, REAL, DIMAG, MAX
- * ..
- * .. External Functions ..
- EXTERNAL DLAMCH
- DOUBLE PRECISION DLAMCH
- DOUBLE PRECISION SAFE1
- * ..
- * .. Statement Functions ..
- COMPLEX*16 CABS1
- * ..
- * .. Statement Function Definitions ..
- CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Adding SAFE1 to the numerator guards against spuriously zero
- * residuals. A similar safeguard is in the CLA_yyAMV routine used
- * to compute AYB.
- *
- SAFE1 = DLAMCH( 'Safe minimum' )
- SAFE1 = (NZ+1)*SAFE1
-
- DO J = 1, NRHS
- BERR(J) = 0.0D+0
- DO I = 1, N
- IF (AYB(I,J) .NE. 0.0D+0) THEN
- TMP = (SAFE1 + CABS1(RES(I,J)))/AYB(I,J)
- BERR(J) = MAX( BERR(J), TMP )
- END IF
- *
- * If AYB is exactly 0.0 (and if computed by CLA_yyAMV), then we know
- * the true residual also must be exactly 0.0.
- *
- END DO
- END DO
- *
- * End of ZLA_LIN_BERR
- *
- END
|