|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
-
- /* > \brief \b ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bound
- ed Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZHETRF_ROOK + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_
- rook.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_
- rook.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_
- rook.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, LDA, LWORK, N */
- /* INTEGER IPIV( * ) */
- /* COMPLEX*16 A( LDA, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZHETRF_ROOK computes the factorization of a complex Hermitian matrix A */
- /* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. */
- /* > The form of the factorization is */
- /* > */
- /* > A = U*D*U**T or A = L*D*L**T */
- /* > */
- /* > where U (or L) is a product of permutation and unit upper (lower) */
- /* > triangular matrices, and D is Hermitian and block diagonal with */
- /* > 1-by-1 and 2-by-2 diagonal blocks. */
- /* > */
- /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
- /* > N-by-N upper triangular part of A contains the upper */
- /* > triangular part of the matrix A, and the strictly lower */
- /* > triangular part of A is not referenced. If UPLO = 'L', the */
- /* > leading N-by-N lower triangular part of A contains the lower */
- /* > triangular part of the matrix A, and the strictly upper */
- /* > triangular part of A is not referenced. */
- /* > */
- /* > On exit, the block diagonal matrix D and the multipliers used */
- /* > to obtain the factor U or L (see below for further details). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > Details of the interchanges and the block structure of D. */
- /* > */
- /* > If UPLO = 'U': */
- /* > Only the last KB elements of IPIV are set. */
- /* > */
- /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* > */
- /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
- /* > columns k and -IPIV(k) were interchanged and rows and */
- /* > columns k-1 and -IPIV(k-1) were inerchaged, */
- /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
- /* > */
- /* > If UPLO = 'L': */
- /* > Only the first KB elements of IPIV are set. */
- /* > */
- /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
- /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* > */
- /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
- /* > columns k and -IPIV(k) were interchanged and rows and */
- /* > columns k+1 and -IPIV(k+1) were inerchaged, */
- /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)). */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The length of WORK. LWORK >=1. For best performance */
- /* > LWORK >= N*NB, where NB is the block size returned by ILAENV. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
- /* > has been completed, but the block diagonal matrix D is */
- /* > exactly singular, and division by zero will occur if it */
- /* > is used to solve a system of equations. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup complex16HEcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > If UPLO = 'U', then A = U*D*U**T, where */
- /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
- /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
- /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
- /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* > */
- /* > ( I v 0 ) k-s */
- /* > U(k) = ( 0 I 0 ) s */
- /* > ( 0 0 I ) n-k */
- /* > k-s s n-k */
- /* > */
- /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
- /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
- /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
- /* > */
- /* > If UPLO = 'L', then A = L*D*L**T, where */
- /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
- /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
- /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
- /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* > */
- /* > ( I 0 0 ) k-1 */
- /* > L(k) = ( 0 I 0 ) s */
- /* > ( 0 v I ) n-k-s+1 */
- /* > k-1 s n-k-s+1 */
- /* > */
- /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
- /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
- /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > June 2016, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > */
- /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
- /* > School of Mathematics, */
- /* > University of Manchester */
- /* > */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void zhetrf_rook_(char *uplo, integer *n, doublecomplex *a,
- integer *lda, integer *ipiv, doublecomplex *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
-
- /* Local variables */
- integer j, k;
- extern logical lsame_(char *, char *);
- integer nbmin, iinfo;
- logical upper;
- integer kb, nb;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer ldwork, lwkopt;
- logical lquery;
- extern /* Subroutine */ void zhetf2_rook_(char *, integer *,
- doublecomplex *, integer *, integer *, integer *);
- integer iws;
- extern /* Subroutine */ void zlahef_rook_(char *, integer *, integer *,
- integer *, doublecomplex *, integer *, integer *, doublecomplex *,
- integer *, integer *);
-
-
- /* -- LAPACK computational routine (version 3.6.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- --work;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -4;
- } else if (*lwork < 1 && ! lquery) {
- *info = -7;
- }
-
- if (*info == 0) {
-
- /* Determine the block size */
-
- nb = ilaenv_(&c__1, "ZHETRF_ROOK", uplo, n, &c_n1, &c_n1, &c_n1, (
- ftnlen)11, (ftnlen)1);
- /* Computing MAX */
- i__1 = 1, i__2 = *n * nb;
- lwkopt = f2cmax(i__1,i__2);
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHETRF_ROOK", &i__1, (ftnlen)11);
- return;
- } else if (lquery) {
- return;
- }
-
- nbmin = 2;
- ldwork = *n;
- if (nb > 1 && nb < *n) {
- iws = ldwork * nb;
- if (*lwork < iws) {
- /* Computing MAX */
- i__1 = *lwork / ldwork;
- nb = f2cmax(i__1,1);
- /* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZHETRF_ROOK", uplo, n, &c_n1, &
- c_n1, &c_n1, (ftnlen)11, (ftnlen)1);
- nbmin = f2cmax(i__1,i__2);
- }
- } else {
- iws = 1;
- }
- if (nb < nbmin) {
- nb = *n;
- }
-
- if (upper) {
-
- /* Factorize A as U*D*U**T using the upper triangle of A */
-
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* KB, where KB is the number of columns factorized by ZLAHEF_ROOK; */
- /* KB is either NB or NB-1, or K for the last block */
-
- k = *n;
- L10:
-
- /* If K < 1, exit from loop */
-
- if (k < 1) {
- goto L40;
- }
-
- if (k > nb) {
-
- /* Factorize columns k-kb+1:k of A and use blocked code to */
- /* update columns 1:k-kb */
-
- zlahef_rook_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &
- work[1], &ldwork, &iinfo);
- } else {
-
- /* Use unblocked code to factorize columns 1:k of A */
-
- zhetf2_rook_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);
- kb = k;
- }
-
- /* Set INFO on the first occurrence of a zero pivot */
-
- if (*info == 0 && iinfo > 0) {
- *info = iinfo;
- }
-
- /* No need to adjust IPIV */
-
- /* Decrease K and return to the start of the main loop */
-
- k -= kb;
- goto L10;
-
- } else {
-
- /* Factorize A as L*D*L**T using the lower triangle of A */
-
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* KB, where KB is the number of columns factorized by ZLAHEF_ROOK; */
- /* KB is either NB or NB-1, or N-K+1 for the last block */
-
- k = 1;
- L20:
-
- /* If K > N, exit from loop */
-
- if (k > *n) {
- goto L40;
- }
-
- if (k <= *n - nb) {
-
- /* Factorize columns k:k+kb-1 of A and use blocked code to */
- /* update columns k+kb:n */
-
- i__1 = *n - k + 1;
- zlahef_rook_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &
- ipiv[k], &work[1], &ldwork, &iinfo);
- } else {
-
- /* Use unblocked code to factorize columns k:n of A */
-
- i__1 = *n - k + 1;
- zhetf2_rook_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &
- iinfo);
- kb = *n - k + 1;
- }
-
- /* Set INFO on the first occurrence of a zero pivot */
-
- if (*info == 0 && iinfo > 0) {
- *info = iinfo + k - 1;
- }
-
- /* Adjust IPIV */
-
- i__1 = k + kb - 1;
- for (j = k; j <= i__1; ++j) {
- if (ipiv[j] > 0) {
- ipiv[j] = ipiv[j] + k - 1;
- } else {
- ipiv[j] = ipiv[j] - k + 1;
- }
- /* L30: */
- }
-
- /* Increase K and return to the start of the main loop */
-
- k += kb;
- goto L20;
-
- }
-
- L40:
- work[1].r = (doublereal) lwkopt, work[1].i = 0.;
- return;
-
- /* End of ZHETRF_ROOK */
-
- } /* zhetrf_rook__ */
|