|
- *> \brief <b> ZHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHBEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
- * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION RWORK( * ), W( * )
- * COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of
- *> a complex Hermitian band matrix A. If eigenvectors are desired, it
- *> uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first KD+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, AB is overwritten by values generated during the
- *> reduction to tridiagonal form. If UPLO = 'U', the first
- *> superdiagonal and the diagonal of the tridiagonal matrix T
- *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
- *> the diagonal and first subdiagonal of T are returned in the
- *> first two rows of AB.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD + 1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- *> eigenvectors of the matrix A, with the i-th column of Z
- *> holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If N <= 1, LWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LWORK must be at least N.
- *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array,
- *> dimension (LRWORK)
- *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of array RWORK.
- *> If N <= 1, LRWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
- *> If JOBZ = 'V' and N > 1, LRWORK must be at least
- *> 1 + 5*N + 2*N**2.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, the algorithm failed to converge; i
- *> off-diagonal elements of an intermediate tridiagonal
- *> form did not converge to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHEReigen
- *
- * =====================================================================
- SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
- $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION RWORK( * ), W( * )
- COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
- $ CONE = ( 1.0D0, 0.0D0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, LQUERY, WANTZ
- INTEGER IINFO, IMAX, INDE, INDWK2, INDWRK, ISCALE,
- $ LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
- DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANHB
- EXTERNAL LSAME, DLAMCH, ZLANHB
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL, DSTERF, XERBLA, ZGEMM, ZHBTRD, ZLACPY,
- $ ZLASCL, ZSTEDC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LOWER = LSAME( UPLO, 'L' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
- *
- INFO = 0
- IF( N.LE.1 ) THEN
- LWMIN = 1
- LRWMIN = 1
- LIWMIN = 1
- ELSE
- IF( WANTZ ) THEN
- LWMIN = 2*N**2
- LRWMIN = 1 + 5*N + 2*N**2
- LIWMIN = 3 + 5*N
- ELSE
- LWMIN = N
- LRWMIN = N
- LIWMIN = 1
- END IF
- END IF
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KD.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -6
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -9
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -13
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -15
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHBEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- W( 1 ) = DBLE( AB( 1, 1 ) )
- IF( WANTZ )
- $ Z( 1, 1 ) = CONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- IF( LOWER ) THEN
- CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- ELSE
- CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- END IF
- END IF
- *
- * Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
- *
- INDE = 1
- INDWRK = INDE + N
- INDWK2 = 1 + N*N
- LLWK2 = LWORK - INDWK2 + 1
- LLRWK = LRWORK - INDWRK + 1
- CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z,
- $ LDZ, WORK, IINFO )
- *
- * For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC.
- *
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, W, RWORK( INDE ), INFO )
- ELSE
- CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
- $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
- $ INFO )
- CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
- $ WORK( INDWK2 ), N )
- CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = N
- ELSE
- IMAX = INFO - 1
- END IF
- CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of ZHBEVD
- *
- END
|