|
- *> \brief \b ZGGSVP3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGGSVP3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
- * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
- * IWORK, RWORK, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBQ, JOBU, JOBV
- * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
- * DOUBLE PRECISION TOLA, TOLB
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGGSVP3 computes unitary matrices U, V and Q such that
- *>
- *> N-K-L K L
- *> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
- *> L ( 0 0 A23 )
- *> M-K-L ( 0 0 0 )
- *>
- *> N-K-L K L
- *> = K ( 0 A12 A13 ) if M-K-L < 0;
- *> M-K ( 0 0 A23 )
- *>
- *> N-K-L K L
- *> V**H*B*Q = L ( 0 0 B13 )
- *> P-L ( 0 0 0 )
- *>
- *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
- *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
- *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
- *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
- *>
- *> This decomposition is the preprocessing step for computing the
- *> Generalized Singular Value Decomposition (GSVD), see subroutine
- *> ZGGSVD3.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU
- *> \verbatim
- *> JOBU is CHARACTER*1
- *> = 'U': Unitary matrix U is computed;
- *> = 'N': U is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV
- *> \verbatim
- *> JOBV is CHARACTER*1
- *> = 'V': Unitary matrix V is computed;
- *> = 'N': V is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBQ
- *> \verbatim
- *> JOBQ is CHARACTER*1
- *> = 'Q': Unitary matrix Q is computed;
- *> = 'N': Q is not computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, A contains the triangular (or trapezoidal) matrix
- *> described in the Purpose section.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,N)
- *> On entry, the P-by-N matrix B.
- *> On exit, B contains the triangular matrix described in
- *> the Purpose section.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,P).
- *> \endverbatim
- *>
- *> \param[in] TOLA
- *> \verbatim
- *> TOLA is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] TOLB
- *> \verbatim
- *> TOLB is DOUBLE PRECISION
- *>
- *> TOLA and TOLB are the thresholds to determine the effective
- *> numerical rank of matrix B and a subblock of A. Generally,
- *> they are set to
- *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
- *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
- *> The size of TOLA and TOLB may affect the size of backward
- *> errors of the decomposition.
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> \endverbatim
- *>
- *> \param[out] L
- *> \verbatim
- *> L is INTEGER
- *>
- *> On exit, K and L specify the dimension of the subblocks
- *> described in Purpose section.
- *> K + L = effective numerical rank of (A**H,B**H)**H.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU,M)
- *> If JOBU = 'U', U contains the unitary matrix U.
- *> If JOBU = 'N', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,M) if
- *> JOBU = 'U'; LDU >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is COMPLEX*16 array, dimension (LDV,P)
- *> If JOBV = 'V', V contains the unitary matrix V.
- *> If JOBV = 'N', V is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V. LDV >= max(1,P) if
- *> JOBV = 'V'; LDV >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ,N)
- *> If JOBQ = 'Q', Q contains the unitary matrix Q.
- *> If JOBQ = 'N', Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N) if
- *> JOBQ = 'Q'; LDQ >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *
- *> \verbatim
- *>
- *> The subroutine uses LAPACK subroutine ZGEQP3 for the QR factorization
- *> with column pivoting to detect the effective numerical rank of the
- *> a matrix. It may be replaced by a better rank determination strategy.
- *>
- *> ZGGSVP3 replaces the deprecated subroutine ZGGSVP.
- *>
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
- $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
- $ IWORK, RWORK, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- CHARACTER JOBQ, JOBU, JOBV
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
- $ LWORK
- DOUBLE PRECISION TOLA, TOLB
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
- INTEGER I, J, LWKOPT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEQP3, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
- $ ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- WANTU = LSAME( JOBU, 'U' )
- WANTV = LSAME( JOBV, 'V' )
- WANTQ = LSAME( JOBQ, 'Q' )
- FORWRD = .TRUE.
- LQUERY = ( LWORK.EQ.-1 )
- LWKOPT = 1
- *
- * Test the input arguments
- *
- INFO = 0
- IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( P.LT.0 ) THEN
- INFO = -5
- ELSE IF( N.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -8
- ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
- INFO = -10
- ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
- INFO = -16
- ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
- INFO = -18
- ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
- INFO = -20
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -24
- END IF
- *
- * Compute workspace
- *
- IF( INFO.EQ.0 ) THEN
- CALL ZGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, RWORK, INFO )
- LWKOPT = INT( WORK ( 1 ) )
- IF( WANTV ) THEN
- LWKOPT = MAX( LWKOPT, P )
- END IF
- LWKOPT = MAX( LWKOPT, MIN( N, P ) )
- LWKOPT = MAX( LWKOPT, M )
- IF( WANTQ ) THEN
- LWKOPT = MAX( LWKOPT, N )
- END IF
- CALL ZGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, RWORK, INFO )
- LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) )
- LWKOPT = MAX( 1, LWKOPT )
- WORK( 1 ) = DCMPLX( LWKOPT )
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGGSVP3', -INFO )
- RETURN
- END IF
- IF( LQUERY ) THEN
- RETURN
- ENDIF
- *
- * QR with column pivoting of B: B*P = V*( S11 S12 )
- * ( 0 0 )
- *
- DO 10 I = 1, N
- IWORK( I ) = 0
- 10 CONTINUE
- CALL ZGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, RWORK, INFO )
- *
- * Update A := A*P
- *
- CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
- *
- * Determine the effective rank of matrix B.
- *
- L = 0
- DO 20 I = 1, MIN( P, N )
- IF( ABS( B( I, I ) ).GT.TOLB )
- $ L = L + 1
- 20 CONTINUE
- *
- IF( WANTV ) THEN
- *
- * Copy the details of V, and form V.
- *
- CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
- IF( P.GT.1 )
- $ CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
- $ LDV )
- CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
- END IF
- *
- * Clean up B
- *
- DO 40 J = 1, L - 1
- DO 30 I = J + 1, L
- B( I, J ) = CZERO
- 30 CONTINUE
- 40 CONTINUE
- IF( P.GT.L )
- $ CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
- *
- IF( WANTQ ) THEN
- *
- * Set Q = I and Update Q := Q*P
- *
- CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
- CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
- END IF
- *
- IF( P.GE.L .AND. N.NE.L ) THEN
- *
- * RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
- *
- CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
- *
- * Update A := A*Z**H
- *
- CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
- $ TAU, A, LDA, WORK, INFO )
- IF( WANTQ ) THEN
- *
- * Update Q := Q*Z**H
- *
- CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
- $ LDB, TAU, Q, LDQ, WORK, INFO )
- END IF
- *
- * Clean up B
- *
- CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
- DO 60 J = N - L + 1, N
- DO 50 I = J - N + L + 1, L
- B( I, J ) = CZERO
- 50 CONTINUE
- 60 CONTINUE
- *
- END IF
- *
- * Let N-L L
- * A = ( A11 A12 ) M,
- *
- * then the following does the complete QR decomposition of A11:
- *
- * A11 = U*( 0 T12 )*P1**H
- * ( 0 0 )
- *
- DO 70 I = 1, N - L
- IWORK( I ) = 0
- 70 CONTINUE
- CALL ZGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, RWORK,
- $ INFO )
- *
- * Determine the effective rank of A11
- *
- K = 0
- DO 80 I = 1, MIN( M, N-L )
- IF( ABS( A( I, I ) ).GT.TOLA )
- $ K = K + 1
- 80 CONTINUE
- *
- * Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
- *
- CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
- $ A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
- *
- IF( WANTU ) THEN
- *
- * Copy the details of U, and form U
- *
- CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
- IF( M.GT.1 )
- $ CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
- $ LDU )
- CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
- END IF
- *
- IF( WANTQ ) THEN
- *
- * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
- *
- CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
- END IF
- *
- * Clean up A: set the strictly lower triangular part of
- * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
- *
- DO 100 J = 1, K - 1
- DO 90 I = J + 1, K
- A( I, J ) = CZERO
- 90 CONTINUE
- 100 CONTINUE
- IF( M.GT.K )
- $ CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
- *
- IF( N-L.GT.K ) THEN
- *
- * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
- *
- CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
- *
- IF( WANTQ ) THEN
- *
- * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
- *
- CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
- $ LDA, TAU, Q, LDQ, WORK, INFO )
- END IF
- *
- * Clean up A
- *
- CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
- DO 120 J = N - L - K + 1, N - L
- DO 110 I = J - N + L + K + 1, K
- A( I, J ) = CZERO
- 110 CONTINUE
- 120 CONTINUE
- *
- END IF
- *
- IF( M.GT.K ) THEN
- *
- * QR factorization of A( K+1:M,N-L+1:N )
- *
- CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
- *
- IF( WANTU ) THEN
- *
- * Update U(:,K+1:M) := U(:,K+1:M)*U1
- *
- CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
- $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
- $ WORK, INFO )
- END IF
- *
- * Clean up
- *
- DO 140 J = N - L + 1, N
- DO 130 I = J - N + K + L + 1, M
- A( I, J ) = CZERO
- 130 CONTINUE
- 140 CONTINUE
- *
- END IF
- *
- WORK( 1 ) = DCMPLX( LWKOPT )
- RETURN
- *
- * End of ZGGSVP3
- *
- END
|