|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {1.,0.};
- static doublecomplex c_b2 = {0.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZGGHRD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZGGHRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, */
- /* LDQ, Z, LDZ, INFO ) */
-
- /* CHARACTER COMPQ, COMPZ */
- /* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
- /* $ Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper */
- /* > Hessenberg form using unitary transformations, where A is a */
- /* > general matrix and B is upper triangular. The form of the */
- /* > generalized eigenvalue problem is */
- /* > A*x = lambda*B*x, */
- /* > and B is typically made upper triangular by computing its QR */
- /* > factorization and moving the unitary matrix Q to the left side */
- /* > of the equation. */
- /* > */
- /* > This subroutine simultaneously reduces A to a Hessenberg matrix H: */
- /* > Q**H*A*Z = H */
- /* > and transforms B to another upper triangular matrix T: */
- /* > Q**H*B*Z = T */
- /* > in order to reduce the problem to its standard form */
- /* > H*y = lambda*T*y */
- /* > where y = Z**H*x. */
- /* > */
- /* > The unitary matrices Q and Z are determined as products of Givens */
- /* > rotations. They may either be formed explicitly, or they may be */
- /* > postmultiplied into input matrices Q1 and Z1, so that */
- /* > Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */
- /* > Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */
- /* > If Q1 is the unitary matrix from the QR factorization of B in the */
- /* > original equation A*x = lambda*B*x, then ZGGHRD reduces the original */
- /* > problem to generalized Hessenberg form. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] COMPQ */
- /* > \verbatim */
- /* > COMPQ is CHARACTER*1 */
- /* > = 'N': do not compute Q; */
- /* > = 'I': Q is initialized to the unit matrix, and the */
- /* > unitary matrix Q is returned; */
- /* > = 'V': Q must contain a unitary matrix Q1 on entry, */
- /* > and the product Q1*Q is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPZ */
- /* > \verbatim */
- /* > COMPZ is CHARACTER*1 */
- /* > = 'N': do not compute Z; */
- /* > = 'I': Z is initialized to the unit matrix, and the */
- /* > unitary matrix Z is returned; */
- /* > = 'V': Z must contain a unitary matrix Z1 on entry, */
- /* > and the product Z1*Z is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > */
- /* > ILO and IHI mark the rows and columns of A which are to be */
- /* > reduced. It is assumed that A is already upper triangular */
- /* > in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */
- /* > normally set by a previous call to ZGGBAL; otherwise they */
- /* > should be set to 1 and N respectively. */
- /* > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA, N) */
- /* > On entry, the N-by-N general matrix to be reduced. */
- /* > On exit, the upper triangle and the first subdiagonal of A */
- /* > are overwritten with the upper Hessenberg matrix H, and the */
- /* > rest is set to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB, N) */
- /* > On entry, the N-by-N upper triangular matrix B. */
- /* > On exit, the upper triangular matrix T = Q**H B Z. The */
- /* > elements below the diagonal are set to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is COMPLEX*16 array, dimension (LDQ, N) */
- /* > On entry, if COMPQ = 'V', the unitary matrix Q1, typically */
- /* > from the QR factorization of B. */
- /* > On exit, if COMPQ='I', the unitary matrix Q, and if */
- /* > COMPQ = 'V', the product Q1*Q. */
- /* > Not referenced if COMPQ='N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX*16 array, dimension (LDZ, N) */
- /* > On entry, if COMPZ = 'V', the unitary matrix Z1. */
- /* > On exit, if COMPZ='I', the unitary matrix Z, and if */
- /* > COMPZ = 'V', the product Z1*Z. */
- /* > Not referenced if COMPZ='N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. */
- /* > LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine reduces A to Hessenberg and B to triangular form by */
- /* > an unblocked reduction, as described in _Matrix_Computations_, */
- /* > by Golub and van Loan (Johns Hopkins Press). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void zgghrd_(char *compq, char *compz, integer *n, integer *
- ilo, integer *ihi, doublecomplex *a, integer *lda, doublecomplex *b,
- integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__,
- integer *ldz, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2, i__3;
- doublecomplex z__1;
-
- /* Local variables */
- integer jcol, jrow;
- extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *);
- doublereal c__;
- doublecomplex s;
- extern logical lsame_(char *, char *);
- doublecomplex ctemp;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer icompq, icompz;
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
- doublecomplex *, doublecomplex *);
- logical ilq, ilz;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode COMPQ */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
-
- /* Function Body */
- if (lsame_(compq, "N")) {
- ilq = FALSE_;
- icompq = 1;
- } else if (lsame_(compq, "V")) {
- ilq = TRUE_;
- icompq = 2;
- } else if (lsame_(compq, "I")) {
- ilq = TRUE_;
- icompq = 3;
- } else {
- icompq = 0;
- }
-
- /* Decode COMPZ */
-
- if (lsame_(compz, "N")) {
- ilz = FALSE_;
- icompz = 1;
- } else if (lsame_(compz, "V")) {
- ilz = TRUE_;
- icompz = 2;
- } else if (lsame_(compz, "I")) {
- ilz = TRUE_;
- icompz = 3;
- } else {
- icompz = 0;
- }
-
- /* Test the input parameters. */
-
- *info = 0;
- if (icompq <= 0) {
- *info = -1;
- } else if (icompz <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1) {
- *info = -4;
- } else if (*ihi > *n || *ihi < *ilo - 1) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (ilq && *ldq < *n || *ldq < 1) {
- *info = -11;
- } else if (ilz && *ldz < *n || *ldz < 1) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGGHRD", &i__1, (ftnlen)6);
- return;
- }
-
- /* Initialize Q and Z if desired. */
-
- if (icompq == 3) {
- zlaset_("Full", n, n, &c_b2, &c_b1, &q[q_offset], ldq);
- }
- if (icompz == 3) {
- zlaset_("Full", n, n, &c_b2, &c_b1, &z__[z_offset], ldz);
- }
-
- /* Quick return if possible */
-
- if (*n <= 1) {
- return;
- }
-
- /* Zero out lower triangle of B */
-
- i__1 = *n - 1;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
- i__3 = jrow + jcol * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- /* L10: */
- }
- /* L20: */
- }
-
- /* Reduce A and B */
-
- i__1 = *ihi - 2;
- for (jcol = *ilo; jcol <= i__1; ++jcol) {
-
- i__2 = jcol + 2;
- for (jrow = *ihi; jrow >= i__2; --jrow) {
-
- /* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
-
- i__3 = jrow - 1 + jcol * a_dim1;
- ctemp.r = a[i__3].r, ctemp.i = a[i__3].i;
- zlartg_(&ctemp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 +
- jcol * a_dim1]);
- i__3 = jrow + jcol * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- i__3 = *n - jcol;
- zrot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
- jcol + 1) * a_dim1], lda, &c__, &s);
- i__3 = *n + 2 - jrow;
- zrot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
- jrow - 1) * b_dim1], ldb, &c__, &s);
- if (ilq) {
- d_cnjg(&z__1, &s);
- zrot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1
- + 1], &c__1, &c__, &z__1);
- }
-
- /* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
-
- i__3 = jrow + jrow * b_dim1;
- ctemp.r = b[i__3].r, ctemp.i = b[i__3].i;
- zlartg_(&ctemp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow
- + jrow * b_dim1]);
- i__3 = jrow + (jrow - 1) * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- zrot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 +
- 1], &c__1, &c__, &s);
- i__3 = jrow - 1;
- zrot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1
- + 1], &c__1, &c__, &s);
- if (ilz) {
- zrot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) *
- z_dim1 + 1], &c__1, &c__, &s);
- }
- /* L30: */
- }
- /* L40: */
- }
-
- return;
-
- /* End of ZGGHRD */
-
- } /* zgghrd_ */
|