|
- *> \brief \b ZGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGETF2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetf2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetf2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetf2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGETF2 computes an LU factorization of a general m-by-n matrix A
- *> using partial pivoting with row interchanges.
- *>
- *> The factorization has the form
- *> A = P * L * U
- *> where P is a permutation matrix, L is lower triangular with unit
- *> diagonal elements (lower trapezoidal if m > n), and U is upper
- *> triangular (upper trapezoidal if m < n).
- *>
- *> This is the right-looking Level 2 BLAS version of the algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the m by n matrix to be factored.
- *> On exit, the factors L and U from the factorization
- *> A = P*L*U; the unit diagonal elements of L are not stored.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices; for 1 <= i <= min(M,N), row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16GEcomputational
- *
- * =====================================================================
- SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE, ZERO
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
- $ ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION SFMIN
- INTEGER I, J, JP
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- INTEGER IZAMAX
- EXTERNAL DLAMCH, IZAMAX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGETF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Compute machine safe minimum
- *
- SFMIN = DLAMCH('S')
- *
- DO 10 J = 1, MIN( M, N )
- *
- * Find pivot and test for singularity.
- *
- JP = J - 1 + IZAMAX( M-J+1, A( J, J ), 1 )
- IPIV( J ) = JP
- IF( A( JP, J ).NE.ZERO ) THEN
- *
- * Apply the interchange to columns 1:N.
- *
- IF( JP.NE.J )
- $ CALL ZSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
- *
- * Compute elements J+1:M of J-th column.
- *
- IF( J.LT.M ) THEN
- IF( ABS(A( J, J )) .GE. SFMIN ) THEN
- CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
- ELSE
- DO 20 I = 1, M-J
- A( J+I, J ) = A( J+I, J ) / A( J, J )
- 20 CONTINUE
- END IF
- END IF
- *
- ELSE IF( INFO.EQ.0 ) THEN
- *
- INFO = J
- END IF
- *
- IF( J.LT.MIN( M, N ) ) THEN
- *
- * Update trailing submatrix.
- *
- CALL ZGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
- $ LDA, A( J+1, J+1 ), LDA )
- END IF
- 10 CONTINUE
- RETURN
- *
- * End of ZGETF2
- *
- END
|