|
- *> \brief \b SSYGST
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSYGST + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygst.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygst.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygst.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, ITYPE, LDA, LDB, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSYGST reduces a real symmetric-definite generalized eigenproblem
- *> to standard form.
- *>
- *> If ITYPE = 1, the problem is A*x = lambda*B*x,
- *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
- *>
- *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
- *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
- *>
- *> B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
- *> = 2 or 3: compute U*A*U**T or L**T*A*L.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored and B is factored as
- *> U**T*U;
- *> = 'L': Lower triangle of A is stored and B is factored as
- *> L*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the transformed matrix, stored in the
- *> same format as A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> The triangular factor from the Cholesky factorization of B,
- *> as returned by SPOTRF.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realSYcomputational
- *
- * =====================================================================
- SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, ITYPE, LDA, LDB, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, HALF
- PARAMETER ( ONE = 1.0, HALF = 0.5 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER K, KB, NB
- * ..
- * .. External Subroutines ..
- EXTERNAL SSYGS2, SSYMM, SSYR2K, STRMM, STRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSYGST', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'SSYGST', UPLO, N, -1, -1, -1 )
- *
- IF( NB.LE.1 .OR. NB.GE.N ) THEN
- *
- * Use unblocked code
- *
- CALL SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
- ELSE
- *
- * Use blocked code
- *
- IF( ITYPE.EQ.1 ) THEN
- IF( UPPER ) THEN
- *
- * Compute inv(U**T)*A*inv(U)
- *
- DO 10 K = 1, N, NB
- KB = MIN( N-K+1, NB )
- *
- * Update the upper triangle of A(k:n,k:n)
- *
- CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
- $ B( K, K ), LDB, INFO )
- IF( K+KB.LE.N ) THEN
- CALL STRSM( 'Left', UPLO, 'Transpose', 'Non-unit',
- $ KB, N-K-KB+1, ONE, B( K, K ), LDB,
- $ A( K, K+KB ), LDA )
- CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
- $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
- $ A( K, K+KB ), LDA )
- CALL SSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, -ONE,
- $ A( K, K+KB ), LDA, B( K, K+KB ), LDB,
- $ ONE, A( K+KB, K+KB ), LDA )
- CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
- $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
- $ A( K, K+KB ), LDA )
- CALL STRSM( 'Right', UPLO, 'No transpose',
- $ 'Non-unit', KB, N-K-KB+1, ONE,
- $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
- $ LDA )
- END IF
- 10 CONTINUE
- ELSE
- *
- * Compute inv(L)*A*inv(L**T)
- *
- DO 20 K = 1, N, NB
- KB = MIN( N-K+1, NB )
- *
- * Update the lower triangle of A(k:n,k:n)
- *
- CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
- $ B( K, K ), LDB, INFO )
- IF( K+KB.LE.N ) THEN
- CALL STRSM( 'Right', UPLO, 'Transpose', 'Non-unit',
- $ N-K-KB+1, KB, ONE, B( K, K ), LDB,
- $ A( K+KB, K ), LDA )
- CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
- $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
- $ A( K+KB, K ), LDA )
- CALL SSYR2K( UPLO, 'No transpose', N-K-KB+1, KB,
- $ -ONE, A( K+KB, K ), LDA, B( K+KB, K ),
- $ LDB, ONE, A( K+KB, K+KB ), LDA )
- CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
- $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
- $ A( K+KB, K ), LDA )
- CALL STRSM( 'Left', UPLO, 'No transpose',
- $ 'Non-unit', N-K-KB+1, KB, ONE,
- $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
- $ LDA )
- END IF
- 20 CONTINUE
- END IF
- ELSE
- IF( UPPER ) THEN
- *
- * Compute U*A*U**T
- *
- DO 30 K = 1, N, NB
- KB = MIN( N-K+1, NB )
- *
- * Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
- *
- CALL STRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
- $ K-1, KB, ONE, B, LDB, A( 1, K ), LDA )
- CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
- $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
- CALL SSYR2K( UPLO, 'No transpose', K-1, KB, ONE,
- $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
- $ LDA )
- CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
- $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
- CALL STRMM( 'Right', UPLO, 'Transpose', 'Non-unit',
- $ K-1, KB, ONE, B( K, K ), LDB, A( 1, K ),
- $ LDA )
- CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
- $ B( K, K ), LDB, INFO )
- 30 CONTINUE
- ELSE
- *
- * Compute L**T*A*L
- *
- DO 40 K = 1, N, NB
- KB = MIN( N-K+1, NB )
- *
- * Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
- *
- CALL STRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
- $ KB, K-1, ONE, B, LDB, A( K, 1 ), LDA )
- CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
- $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
- CALL SSYR2K( UPLO, 'Transpose', K-1, KB, ONE,
- $ A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A,
- $ LDA )
- CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
- $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
- CALL STRMM( 'Left', UPLO, 'Transpose', 'Non-unit', KB,
- $ K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA )
- CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
- $ B( K, K ), LDB, INFO )
- 40 CONTINUE
- END IF
- END IF
- END IF
- RETURN
- *
- * End of SSYGST
- *
- END
|