|
- *> \brief <b> SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSTEVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
- * M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE
- * INTEGER IL, INFO, IU, LDZ, M, N
- * REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSTEVX computes selected eigenvalues and, optionally, eigenvectors
- *> of a real symmetric tridiagonal matrix A. Eigenvalues and
- *> eigenvectors can be selected by specifying either a range of values
- *> or a range of indices for the desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found.
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found.
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the n diagonal elements of the tridiagonal matrix
- *> A.
- *> On exit, D may be multiplied by a constant factor chosen
- *> to avoid over/underflow in computing the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (max(1,N-1))
- *> On entry, the (n-1) subdiagonal elements of the tridiagonal
- *> matrix A in elements 1 to N-1 of E.
- *> On exit, E may be multiplied by a constant factor chosen
- *> to avoid over/underflow in computing the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is REAL
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less
- *> than or equal to zero, then EPS*|T| will be used in
- *> its place, where |T| is the 1-norm of the tridiagonal
- *> matrix.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*SLAMCH('S').
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices
- *> with Guaranteed High Relative Accuracy," by Demmel and
- *> Kahan, LAPACK Working Note #3.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first M elements contain the selected eigenvalues in
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, max(1,M) )
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> If an eigenvector fails to converge (INFO > 0), then that
- *> column of Z contains the latest approximation to the
- *> eigenvector, and the index of the eigenvector is returned
- *> in IFAIL. If JOBZ = 'N', then Z is not referenced.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, then i eigenvectors failed to converge.
- *> Their indices are stored in array IFAIL.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHEReigen
- *
- * =====================================================================
- SUBROUTINE SSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
- $ M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE
- INTEGER IL, INFO, IU, LDZ, M, N
- REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
- CHARACTER ORDER
- INTEGER I, IMAX, INDIBL, INDISP, INDIWO, INDWRK,
- $ ISCALE, ITMP1, J, JJ, NSPLIT
- REAL BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
- $ TMP1, TNRM, VLL, VUU
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANST
- EXTERNAL LSAME, SLAMCH, SLANST
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SSCAL, SSTEBZ, SSTEIN, SSTEQR, SSTERF,
- $ SSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -7
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -9
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
- $ INFO = -14
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSTEVX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( ALLEIG .OR. INDEIG ) THEN
- M = 1
- W( 1 ) = D( 1 )
- ELSE
- IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
- M = 1
- W( 1 ) = D( 1 )
- END IF
- END IF
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- IF ( VALEIG ) THEN
- VLL = VL
- VUU = VU
- ELSE
- VLL = ZERO
- VUU = ZERO
- ENDIF
- TNRM = SLANST( 'M', N, D, E )
- IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / TNRM
- ELSE IF( TNRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / TNRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL SSCAL( N, SIGMA, D, 1 )
- CALL SSCAL( N-1, SIGMA, E( 1 ), 1 )
- IF( VALEIG ) THEN
- VLL = VL*SIGMA
- VUU = VU*SIGMA
- END IF
- END IF
- *
- * If all eigenvalues are desired and ABSTOL is less than zero, then
- * call SSTERF or SSTEQR. If this fails for some eigenvalue, then
- * try SSTEBZ.
- *
- TEST = .FALSE.
- IF( INDEIG ) THEN
- IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
- CALL SCOPY( N, D, 1, W, 1 )
- CALL SCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
- INDWRK = N + 1
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, WORK, INFO )
- ELSE
- CALL SSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
- IF( INFO.EQ.0 ) THEN
- DO 10 I = 1, N
- IFAIL( I ) = 0
- 10 CONTINUE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 20
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
- INDWRK = 1
- INDIBL = 1
- INDISP = INDIBL + N
- INDIWO = INDISP + N
- CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
- $ NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ),
- $ WORK( INDWRK ), IWORK( INDIWO ), INFO )
- *
- IF( WANTZ ) THEN
- CALL SSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
- $ Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
- $ INFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- 20 CONTINUE
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = M
- ELSE
- IMAX = INFO - 1
- END IF
- CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 40 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 30 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 30 CONTINUE
- *
- IF( I.NE.0 ) THEN
- ITMP1 = IWORK( INDIBL+I-1 )
- W( I ) = W( J )
- IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
- W( J ) = TMP1
- IWORK( INDIBL+J-1 ) = ITMP1
- CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- IF( INFO.NE.0 ) THEN
- ITMP1 = IFAIL( I )
- IFAIL( I ) = IFAIL( J )
- IFAIL( J ) = ITMP1
- END IF
- END IF
- 40 CONTINUE
- END IF
- *
- RETURN
- *
- * End of SSTEVX
- *
- END
|